Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems
- Autores
- Spies, Ruben Daniel; Temperini, Karina Guadalupe
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A standard engineering procedure for approximating the solutions of an infinite-dimensional inverse problem of the form Ax = y, where A is a given compact linear operator on a Hilbert space X and y is the given data, is to find a sequence {XN} of finite-dimensional approximating subspaces of X whose union is dense in X and to construct the sequence {xN} of least-squares solutions of the problem in X N. In 1980, Seidman showed that if the problem is ill-posed, then, without any additional assumptions on the exact solution or on the sequence of approximating subspaces XN, it cannot be guaranteed that the sequence {xN} will converge to the exact solution. In this paper, this result is extended in the following sense: it is shown that if X is separable, then for any y ∈ X, y ≠ 0 and for any arbitrarily given function there exists an injective, compact linear operator A and an increasing sequence of finite-dimensional subspaces XN ⊂ X such that for all, where xN is the least-squares solution of Ax = y in XN. © 2006 IOP Publishing Ltd.
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral; Argentina - Materia
-
Arbitrary Divergence
Least-Squares Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84067
Ver los metadatos del registro completo
id |
CONICETDig_c04f6dc03382e01b08b93b1bdeed7afb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84067 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problemsSpies, Ruben DanielTemperini, Karina GuadalupeArbitrary DivergenceLeast-Squares Methodhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A standard engineering procedure for approximating the solutions of an infinite-dimensional inverse problem of the form Ax = y, where A is a given compact linear operator on a Hilbert space X and y is the given data, is to find a sequence {XN} of finite-dimensional approximating subspaces of X whose union is dense in X and to construct the sequence {xN} of least-squares solutions of the problem in X N. In 1980, Seidman showed that if the problem is ill-posed, then, without any additional assumptions on the exact solution or on the sequence of approximating subspaces XN, it cannot be guaranteed that the sequence {xN} will converge to the exact solution. In this paper, this result is extended in the following sense: it is shown that if X is separable, then for any y ∈ X, y ≠ 0 and for any arbitrarily given function there exists an injective, compact linear operator A and an increasing sequence of finite-dimensional subspaces XN ⊂ X such that for all, where xN is the least-squares solution of Ax = y in XN. © 2006 IOP Publishing Ltd.Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral; ArgentinaIOP Publishing2006-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84067Spies, Ruben Daniel; Temperini, Karina Guadalupe; Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems; IOP Publishing; Inverse Problems; 22; 2; 4-2006; 611-6260266-5611CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0266-5611/22/2/014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:20Zoai:ri.conicet.gov.ar:11336/84067instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:20.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems |
title |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems |
spellingShingle |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems Spies, Ruben Daniel Arbitrary Divergence Least-Squares Method |
title_short |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems |
title_full |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems |
title_fullStr |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems |
title_full_unstemmed |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems |
title_sort |
Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems |
dc.creator.none.fl_str_mv |
Spies, Ruben Daniel Temperini, Karina Guadalupe |
author |
Spies, Ruben Daniel |
author_facet |
Spies, Ruben Daniel Temperini, Karina Guadalupe |
author_role |
author |
author2 |
Temperini, Karina Guadalupe |
author2_role |
author |
dc.subject.none.fl_str_mv |
Arbitrary Divergence Least-Squares Method |
topic |
Arbitrary Divergence Least-Squares Method |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A standard engineering procedure for approximating the solutions of an infinite-dimensional inverse problem of the form Ax = y, where A is a given compact linear operator on a Hilbert space X and y is the given data, is to find a sequence {XN} of finite-dimensional approximating subspaces of X whose union is dense in X and to construct the sequence {xN} of least-squares solutions of the problem in X N. In 1980, Seidman showed that if the problem is ill-posed, then, without any additional assumptions on the exact solution or on the sequence of approximating subspaces XN, it cannot be guaranteed that the sequence {xN} will converge to the exact solution. In this paper, this result is extended in the following sense: it is shown that if X is separable, then for any y ∈ X, y ≠ 0 and for any arbitrarily given function there exists an injective, compact linear operator A and an increasing sequence of finite-dimensional subspaces XN ⊂ X such that for all, where xN is the least-squares solution of Ax = y in XN. © 2006 IOP Publishing Ltd. Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral; Argentina |
description |
A standard engineering procedure for approximating the solutions of an infinite-dimensional inverse problem of the form Ax = y, where A is a given compact linear operator on a Hilbert space X and y is the given data, is to find a sequence {XN} of finite-dimensional approximating subspaces of X whose union is dense in X and to construct the sequence {xN} of least-squares solutions of the problem in X N. In 1980, Seidman showed that if the problem is ill-posed, then, without any additional assumptions on the exact solution or on the sequence of approximating subspaces XN, it cannot be guaranteed that the sequence {xN} will converge to the exact solution. In this paper, this result is extended in the following sense: it is shown that if X is separable, then for any y ∈ X, y ≠ 0 and for any arbitrarily given function there exists an injective, compact linear operator A and an increasing sequence of finite-dimensional subspaces XN ⊂ X such that for all, where xN is the least-squares solution of Ax = y in XN. © 2006 IOP Publishing Ltd. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84067 Spies, Ruben Daniel; Temperini, Karina Guadalupe; Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems; IOP Publishing; Inverse Problems; 22; 2; 4-2006; 611-626 0266-5611 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84067 |
identifier_str_mv |
Spies, Ruben Daniel; Temperini, Karina Guadalupe; Arbitrary divergence speed of the least-squares method in infinite-dimensional inverse ill-posed problems; IOP Publishing; Inverse Problems; 22; 2; 4-2006; 611-626 0266-5611 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0266-5611/22/2/014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269632860258304 |
score |
13.13397 |