Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patol...
- Autores
- Bianchi, Gianfranco
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Andres, Daniela Sabrina
Portu, Agustina Mariana - Descripción
- Trabajo Final Integrador de Ingeniería
En la actualidad el diagnóstico de enfermedad de Parkinson se basa en evaluación clínica, utilizando la escala Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDF UPDRS), pese a los avances tecnológicos de las últimas décadas en el tema. En este proyecto final integrador presento el diseño y desarrollo de nuevas tecnologías para diagnóstico cuantitativo de enfermedad de Parkinson. Para lograrlo llevé a cabo la construcción de un sistema bimodular de adquisición y procesamiento de señales de aceleración. El primer módulo es una pulsera encargada de adquirir los datos de movimiento y transmitirlos de forma inalámbrica. El segundo módulo es una aplicación móvil desarrollada especialmente con el fin de establecer la comunicación inalámbrica entre los módulos, recibir la información de la pulsera, permitir el ingreso de información sobre la evaluación y generar los archivos para finalmente almacenarlos en la memoria interna del dispositivo. Para realizar diagnóstico cuantitativo se buscan parámetros objetivos, alguna cantidad que correlacione con el fenómeno que se quiere cuantificar. En este trabajo desarrollé herramientas de análisis matemático, calculando parámetros vinculados a patrones temporales y frecuenciales. La validación de las herramientas de análisis fue hecha en un ensayo clínico para el que utilicé señales de dos fuentes: señales de pacientes ambulatorios del instituto FLENI, adquiridas con el sistema bimoludar desarrollado, y señales intraquirúrgicas registradas con un método de registro comercial en el estudio de Shah et al. 2017, analizadas en una experiencia que hice en sus laboratorios en FHNW. Analizando el espectro de potencias de las señales de pacientes ambulatorios graficado en escala doble logarítmica, encontré una reducción con significancia estadística (p<0.005) del rango de frecuencias que sigue una ley de potencias (rango invariante lineal, LIR) cuando se los compara con el grupo control. Aplicando la transformada de Hilbert Huang a los datos intraquirúrgicos encontré parámetros comparables a los hallados por Shah et al. Conclusiones: El parámetro LIR calculado correlaciona con el método MDS-UPDRS-III actual, por lo que permite proponer una reducción de la dimensionalidad de la escala. Se propone el LIR encontrado como posible biomarcador de enfermedad de Parkinson. Los datos obtenidos son de calidad comparables con los obtenidos con sistemas comerciales.
Fil: Bianchi, Gianfranco. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. - Materia
-
ENFERMEDAD DE PARKINSON
DISPOSITIVO MÓVIL
TECNOLOGÍA AVANZADA
PROCESAMIENTO DE SEÑAL
TRANSMISIÓN INALÁMBRICA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de General San Martín
- OAI Identificador
- oai:ri.unsam.edu.ar:123456789/1290
Ver los metadatos del registro completo
| id |
RIUNSAM_e53f16074514d7739bc91027b295c579 |
|---|---|
| oai_identifier_str |
oai:ri.unsam.edu.ar:123456789/1290 |
| network_acronym_str |
RIUNSAM |
| repository_id_str |
s |
| network_name_str |
Repositorio Institucional (UNSAM) |
| spelling |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico.Bianchi, GianfrancoENFERMEDAD DE PARKINSONDISPOSITIVO MÓVILTECNOLOGÍA AVANZADAPROCESAMIENTO DE SEÑALTRANSMISIÓN INALÁMBRICATrabajo Final Integrador de IngenieríaEn la actualidad el diagnóstico de enfermedad de Parkinson se basa en evaluación clínica, utilizando la escala Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDF UPDRS), pese a los avances tecnológicos de las últimas décadas en el tema. En este proyecto final integrador presento el diseño y desarrollo de nuevas tecnologías para diagnóstico cuantitativo de enfermedad de Parkinson. Para lograrlo llevé a cabo la construcción de un sistema bimodular de adquisición y procesamiento de señales de aceleración. El primer módulo es una pulsera encargada de adquirir los datos de movimiento y transmitirlos de forma inalámbrica. El segundo módulo es una aplicación móvil desarrollada especialmente con el fin de establecer la comunicación inalámbrica entre los módulos, recibir la información de la pulsera, permitir el ingreso de información sobre la evaluación y generar los archivos para finalmente almacenarlos en la memoria interna del dispositivo. Para realizar diagnóstico cuantitativo se buscan parámetros objetivos, alguna cantidad que correlacione con el fenómeno que se quiere cuantificar. En este trabajo desarrollé herramientas de análisis matemático, calculando parámetros vinculados a patrones temporales y frecuenciales. La validación de las herramientas de análisis fue hecha en un ensayo clínico para el que utilicé señales de dos fuentes: señales de pacientes ambulatorios del instituto FLENI, adquiridas con el sistema bimoludar desarrollado, y señales intraquirúrgicas registradas con un método de registro comercial en el estudio de Shah et al. 2017, analizadas en una experiencia que hice en sus laboratorios en FHNW. Analizando el espectro de potencias de las señales de pacientes ambulatorios graficado en escala doble logarítmica, encontré una reducción con significancia estadística (p<0.005) del rango de frecuencias que sigue una ley de potencias (rango invariante lineal, LIR) cuando se los compara con el grupo control. Aplicando la transformada de Hilbert Huang a los datos intraquirúrgicos encontré parámetros comparables a los hallados por Shah et al. Conclusiones: El parámetro LIR calculado correlaciona con el método MDS-UPDRS-III actual, por lo que permite proponer una reducción de la dimensionalidad de la escala. Se propone el LIR encontrado como posible biomarcador de enfermedad de Parkinson. Los datos obtenidos son de calidad comparables con los obtenidos con sistemas comerciales.Fil: Bianchi, Gianfranco. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina.Universidad Nacional de San Martín. Escuela de Ciencia y TecnologíaAndres, Daniela SabrinaPortu, Agustina Mariana2019info:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/trabajoFinalDeGradoapplication/pdf81 p.application/pdfBianchi, Gianfranco. (2019) Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología.TING ESCYT 2019 BGhttps://ri.unsam.edu.ar/handle/123456789/1290spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5)reponame:Repositorio Institucional (UNSAM)instname:Universidad Nacional de General San Martín2025-10-16T10:11:41Zoai:ri.unsam.edu.ar:123456789/1290instacron:UNSAMInstitucionalhttp://ri.unsam.edu.arUniversidad públicaNo correspondehttp://ri.unsam.edu.ar/oai/lpastran@unsam.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:s2025-10-16 10:12:29.018Repositorio Institucional (UNSAM) - Universidad Nacional de General San Martínfalse |
| dc.title.none.fl_str_mv |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. |
| title |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. |
| spellingShingle |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. Bianchi, Gianfranco ENFERMEDAD DE PARKINSON DISPOSITIVO MÓVIL TECNOLOGÍA AVANZADA PROCESAMIENTO DE SEÑAL TRANSMISIÓN INALÁMBRICA |
| title_short |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. |
| title_full |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. |
| title_fullStr |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. |
| title_full_unstemmed |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. |
| title_sort |
Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. |
| dc.creator.none.fl_str_mv |
Bianchi, Gianfranco |
| author |
Bianchi, Gianfranco |
| author_facet |
Bianchi, Gianfranco |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Andres, Daniela Sabrina Portu, Agustina Mariana |
| dc.subject.none.fl_str_mv |
ENFERMEDAD DE PARKINSON DISPOSITIVO MÓVIL TECNOLOGÍA AVANZADA PROCESAMIENTO DE SEÑAL TRANSMISIÓN INALÁMBRICA |
| topic |
ENFERMEDAD DE PARKINSON DISPOSITIVO MÓVIL TECNOLOGÍA AVANZADA PROCESAMIENTO DE SEÑAL TRANSMISIÓN INALÁMBRICA |
| dc.description.none.fl_txt_mv |
Trabajo Final Integrador de Ingeniería En la actualidad el diagnóstico de enfermedad de Parkinson se basa en evaluación clínica, utilizando la escala Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDF UPDRS), pese a los avances tecnológicos de las últimas décadas en el tema. En este proyecto final integrador presento el diseño y desarrollo de nuevas tecnologías para diagnóstico cuantitativo de enfermedad de Parkinson. Para lograrlo llevé a cabo la construcción de un sistema bimodular de adquisición y procesamiento de señales de aceleración. El primer módulo es una pulsera encargada de adquirir los datos de movimiento y transmitirlos de forma inalámbrica. El segundo módulo es una aplicación móvil desarrollada especialmente con el fin de establecer la comunicación inalámbrica entre los módulos, recibir la información de la pulsera, permitir el ingreso de información sobre la evaluación y generar los archivos para finalmente almacenarlos en la memoria interna del dispositivo. Para realizar diagnóstico cuantitativo se buscan parámetros objetivos, alguna cantidad que correlacione con el fenómeno que se quiere cuantificar. En este trabajo desarrollé herramientas de análisis matemático, calculando parámetros vinculados a patrones temporales y frecuenciales. La validación de las herramientas de análisis fue hecha en un ensayo clínico para el que utilicé señales de dos fuentes: señales de pacientes ambulatorios del instituto FLENI, adquiridas con el sistema bimoludar desarrollado, y señales intraquirúrgicas registradas con un método de registro comercial en el estudio de Shah et al. 2017, analizadas en una experiencia que hice en sus laboratorios en FHNW. Analizando el espectro de potencias de las señales de pacientes ambulatorios graficado en escala doble logarítmica, encontré una reducción con significancia estadística (p<0.005) del rango de frecuencias que sigue una ley de potencias (rango invariante lineal, LIR) cuando se los compara con el grupo control. Aplicando la transformada de Hilbert Huang a los datos intraquirúrgicos encontré parámetros comparables a los hallados por Shah et al. Conclusiones: El parámetro LIR calculado correlaciona con el método MDS-UPDRS-III actual, por lo que permite proponer una reducción de la dimensionalidad de la escala. Se propone el LIR encontrado como posible biomarcador de enfermedad de Parkinson. Los datos obtenidos son de calidad comparables con los obtenidos con sistemas comerciales. Fil: Bianchi, Gianfranco. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. |
| description |
Trabajo Final Integrador de Ingeniería |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion info:eu-repo/semantics/bachelorThesis http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/trabajoFinalDeGrado |
| status_str |
acceptedVersion |
| format |
bachelorThesis |
| dc.identifier.none.fl_str_mv |
Bianchi, Gianfranco. (2019) Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. TING ESCYT 2019 BG https://ri.unsam.edu.ar/handle/123456789/1290 |
| identifier_str_mv |
Bianchi, Gianfranco. (2019) Nuevas tecnologías para diagnóstico cuantitativo en trastornos de movimiento: Desarrollo de una pulsera sensible y tecnología móvil para la detección de eventos de movimiento patológico. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. TING ESCYT 2019 BG |
| url |
https://ri.unsam.edu.ar/handle/123456789/1290 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf 81 p. application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología |
| publisher.none.fl_str_mv |
Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología |
| dc.source.none.fl_str_mv |
reponame:Repositorio Institucional (UNSAM) instname:Universidad Nacional de General San Martín |
| reponame_str |
Repositorio Institucional (UNSAM) |
| collection |
Repositorio Institucional (UNSAM) |
| instname_str |
Universidad Nacional de General San Martín |
| repository.name.fl_str_mv |
Repositorio Institucional (UNSAM) - Universidad Nacional de General San Martín |
| repository.mail.fl_str_mv |
lpastran@unsam.edu.ar |
| _version_ |
1846789439186010112 |
| score |
12.471625 |