Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
- Autores
- Pulido, Manuel Arturo; Scheffler, Guillermo; Ruiz, Juan José; Lucini, María Magdalena; Tandeo, Pierre
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argetina.
Fil: Scheffler, Guillermo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Scheffler, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Ruiz, Juan José. Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera; Argentina.
Fil: Ruiz, Juan José. Advanced Institute for Computational Science, Kobe; Japón.
Fil: Ruiz, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argentina.
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Tandeo, Pierre. Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance; Francia.
Oceanic and atmospheric global numerical models represent explicitly the large-scale dynamics while the smaller-scale processes are not resolved, so that their effects in the large-scale dynamics are included through subgrid-scale parametrizations. These parametrizations represent small-scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid-scale parametrizations but also to uncover the functional dependencies of subgridscale processes as a function of large-scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two-scale Lorenz ’96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large-scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large-scale variables and by a space-dependentmodel error term. Then a polynomial regression is used to fit the estimated model error as a function of the large-scale model variables in order to develop a parametrization of small-scale dynamics. The online estimation shows a Good performancewhen the parameter-state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid-scale processes. The nonlinear and non-local dependence found in an experiment with shear-generated small-scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid-scale parametrizations. - Fuente
- Quarterly Journal of the Royal Meteorological Society, 2016, vol. 142, p. 2974–2984.
- Materia
-
EnKF
Parameter estimation
Subgrid-scale schemes
Lorenz ’96 system
Parametrization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional del Nordeste
- OAI Identificador
- oai:repositorio.unne.edu.ar:123456789/30326
Ver los metadatos del registro completo
id |
RIUNNE_9a5b6ab1044ab641c43239abdb3ee277 |
---|---|
oai_identifier_str |
oai:repositorio.unne.edu.ar:123456789/30326 |
network_acronym_str |
RIUNNE |
repository_id_str |
4871 |
network_name_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
spelling |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experimentPulido, Manuel ArturoScheffler, GuillermoRuiz, Juan JoséLucini, María MagdalenaTandeo, PierreEnKFParameter estimationSubgrid-scale schemesLorenz ’96 systemParametrizationFil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argetina.Fil: Scheffler, Guillermo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.Fil: Scheffler, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Ruiz, Juan José. Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera; Argentina.Fil: Ruiz, Juan José. Advanced Institute for Computational Science, Kobe; Japón.Fil: Ruiz, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argentina.Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Tandeo, Pierre. Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance; Francia.Oceanic and atmospheric global numerical models represent explicitly the large-scale dynamics while the smaller-scale processes are not resolved, so that their effects in the large-scale dynamics are included through subgrid-scale parametrizations. These parametrizations represent small-scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid-scale parametrizations but also to uncover the functional dependencies of subgridscale processes as a function of large-scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two-scale Lorenz ’96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large-scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large-scale variables and by a space-dependentmodel error term. Then a polynomial regression is used to fit the estimated model error as a function of the large-scale model variables in order to develop a parametrization of small-scale dynamics. The online estimation shows a Good performancewhen the parameter-state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid-scale processes. The nonlinear and non-local dependence found in an experiment with shear-generated small-scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid-scale parametrizations.Royal Meteorological Society2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfPulido, Manuel Arturo, et. al., 2016. Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment. Quarterly Journal of the Royal Meteorological Society. Londres: Royal Meteorological Society, vol. 142, p. 2974–2984. ISSN 0035-9009.0035-9009http://repositorio.unne.edu.ar/handle/123456789/30326Quarterly Journal of the Royal Meteorological Society, 2016, vol. 142, p. 2974–2984.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-29T14:29:26Zoai:repositorio.unne.edu.ar:123456789/30326instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-29 14:29:27.166Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse |
dc.title.none.fl_str_mv |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment |
title |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment |
spellingShingle |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment Pulido, Manuel Arturo EnKF Parameter estimation Subgrid-scale schemes Lorenz ’96 system Parametrization |
title_short |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment |
title_full |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment |
title_fullStr |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment |
title_full_unstemmed |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment |
title_sort |
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment |
dc.creator.none.fl_str_mv |
Pulido, Manuel Arturo Scheffler, Guillermo Ruiz, Juan José Lucini, María Magdalena Tandeo, Pierre |
author |
Pulido, Manuel Arturo |
author_facet |
Pulido, Manuel Arturo Scheffler, Guillermo Ruiz, Juan José Lucini, María Magdalena Tandeo, Pierre |
author_role |
author |
author2 |
Scheffler, Guillermo Ruiz, Juan José Lucini, María Magdalena Tandeo, Pierre |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
EnKF Parameter estimation Subgrid-scale schemes Lorenz ’96 system Parametrization |
topic |
EnKF Parameter estimation Subgrid-scale schemes Lorenz ’96 system Parametrization |
dc.description.none.fl_txt_mv |
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argetina. Fil: Scheffler, Guillermo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Fil: Scheffler, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Ruiz, Juan José. Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Fil: Ruiz, Juan José. Advanced Institute for Computational Science, Kobe; Japón. Fil: Ruiz, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argentina. Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Tandeo, Pierre. Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance; Francia. Oceanic and atmospheric global numerical models represent explicitly the large-scale dynamics while the smaller-scale processes are not resolved, so that their effects in the large-scale dynamics are included through subgrid-scale parametrizations. These parametrizations represent small-scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid-scale parametrizations but also to uncover the functional dependencies of subgridscale processes as a function of large-scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two-scale Lorenz ’96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large-scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large-scale variables and by a space-dependentmodel error term. Then a polynomial regression is used to fit the estimated model error as a function of the large-scale model variables in order to develop a parametrization of small-scale dynamics. The online estimation shows a Good performancewhen the parameter-state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid-scale processes. The nonlinear and non-local dependence found in an experiment with shear-generated small-scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid-scale parametrizations. |
description |
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Pulido, Manuel Arturo, et. al., 2016. Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment. Quarterly Journal of the Royal Meteorological Society. Londres: Royal Meteorological Society, vol. 142, p. 2974–2984. ISSN 0035-9009. 0035-9009 http://repositorio.unne.edu.ar/handle/123456789/30326 |
identifier_str_mv |
Pulido, Manuel Arturo, et. al., 2016. Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment. Quarterly Journal of the Royal Meteorological Society. Londres: Royal Meteorological Society, vol. 142, p. 2974–2984. ISSN 0035-9009. 0035-9009 |
url |
http://repositorio.unne.edu.ar/handle/123456789/30326 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Meteorological Society |
publisher.none.fl_str_mv |
Royal Meteorological Society |
dc.source.none.fl_str_mv |
Quarterly Journal of the Royal Meteorological Society, 2016, vol. 142, p. 2974–2984. reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) instname:Universidad Nacional del Nordeste |
reponame_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
collection |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
instname_str |
Universidad Nacional del Nordeste |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste |
repository.mail.fl_str_mv |
ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar |
_version_ |
1844621664388644864 |
score |
12.559606 |