Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment

Autores
Pulido, Manuel Arturo; Scheffler, Guillermo; Ruiz, Juan José; Lucini, María Magdalena; Tandeo, Pierre
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argetina.
Fil: Scheffler, Guillermo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Scheffler, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Ruiz, Juan José. Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera; Argentina.
Fil: Ruiz, Juan José. Advanced Institute for Computational Science, Kobe; Japón.
Fil: Ruiz, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argentina.
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Tandeo, Pierre. Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance; Francia.
Oceanic and atmospheric global numerical models represent explicitly the large-scale dynamics while the smaller-scale processes are not resolved, so that their effects in the large-scale dynamics are included through subgrid-scale parametrizations. These parametrizations represent small-scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid-scale parametrizations but also to uncover the functional dependencies of subgridscale processes as a function of large-scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two-scale Lorenz ’96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large-scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large-scale variables and by a space-dependentmodel error term. Then a polynomial regression is used to fit the estimated model error as a function of the large-scale model variables in order to develop a parametrization of small-scale dynamics. The online estimation shows a Good performancewhen the parameter-state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid-scale processes. The nonlinear and non-local dependence found in an experiment with shear-generated small-scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid-scale parametrizations.
Fuente
Quarterly Journal of the Royal Meteorological Society, 2016, vol. 142, p. 2974–2984.
Materia
EnKF
Parameter estimation
Subgrid-scale schemes
Lorenz ’96 system
Parametrization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/30326

id RIUNNE_9a5b6ab1044ab641c43239abdb3ee277
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/30326
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experimentPulido, Manuel ArturoScheffler, GuillermoRuiz, Juan JoséLucini, María MagdalenaTandeo, PierreEnKFParameter estimationSubgrid-scale schemesLorenz ’96 systemParametrizationFil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argetina.Fil: Scheffler, Guillermo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.Fil: Scheffler, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Ruiz, Juan José. Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera; Argentina.Fil: Ruiz, Juan José. Advanced Institute for Computational Science, Kobe; Japón.Fil: Ruiz, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argentina.Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Tandeo, Pierre. Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance; Francia.Oceanic and atmospheric global numerical models represent explicitly the large-scale dynamics while the smaller-scale processes are not resolved, so that their effects in the large-scale dynamics are included through subgrid-scale parametrizations. These parametrizations represent small-scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid-scale parametrizations but also to uncover the functional dependencies of subgridscale processes as a function of large-scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two-scale Lorenz ’96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large-scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large-scale variables and by a space-dependentmodel error term. Then a polynomial regression is used to fit the estimated model error as a function of the large-scale model variables in order to develop a parametrization of small-scale dynamics. The online estimation shows a Good performancewhen the parameter-state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid-scale processes. The nonlinear and non-local dependence found in an experiment with shear-generated small-scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid-scale parametrizations.Royal Meteorological Society2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfPulido, Manuel Arturo, et. al., 2016. Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment. Quarterly Journal of the Royal Meteorological Society. Londres: Royal Meteorological Society, vol. 142, p. 2974–2984. ISSN 0035-9009.0035-9009http://repositorio.unne.edu.ar/handle/123456789/30326Quarterly Journal of the Royal Meteorological Society, 2016, vol. 142, p. 2974–2984.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-29T14:29:26Zoai:repositorio.unne.edu.ar:123456789/30326instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-29 14:29:27.166Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
title Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
spellingShingle Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
Pulido, Manuel Arturo
EnKF
Parameter estimation
Subgrid-scale schemes
Lorenz ’96 system
Parametrization
title_short Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
title_full Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
title_fullStr Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
title_full_unstemmed Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
title_sort Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
dc.creator.none.fl_str_mv Pulido, Manuel Arturo
Scheffler, Guillermo
Ruiz, Juan José
Lucini, María Magdalena
Tandeo, Pierre
author Pulido, Manuel Arturo
author_facet Pulido, Manuel Arturo
Scheffler, Guillermo
Ruiz, Juan José
Lucini, María Magdalena
Tandeo, Pierre
author_role author
author2 Scheffler, Guillermo
Ruiz, Juan José
Lucini, María Magdalena
Tandeo, Pierre
author2_role author
author
author
author
dc.subject.none.fl_str_mv EnKF
Parameter estimation
Subgrid-scale schemes
Lorenz ’96 system
Parametrization
topic EnKF
Parameter estimation
Subgrid-scale schemes
Lorenz ’96 system
Parametrization
dc.description.none.fl_txt_mv Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argetina.
Fil: Scheffler, Guillermo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Scheffler, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Ruiz, Juan José. Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera; Argentina.
Fil: Ruiz, Juan José. Advanced Institute for Computational Science, Kobe; Japón.
Fil: Ruiz, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argentina.
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Tandeo, Pierre. Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance; Francia.
Oceanic and atmospheric global numerical models represent explicitly the large-scale dynamics while the smaller-scale processes are not resolved, so that their effects in the large-scale dynamics are included through subgrid-scale parametrizations. These parametrizations represent small-scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid-scale parametrizations but also to uncover the functional dependencies of subgridscale processes as a function of large-scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two-scale Lorenz ’96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large-scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large-scale variables and by a space-dependentmodel error term. Then a polynomial regression is used to fit the estimated model error as a function of the large-scale model variables in order to develop a parametrization of small-scale dynamics. The online estimation shows a Good performancewhen the parameter-state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid-scale processes. The nonlinear and non-local dependence found in an experiment with shear-generated small-scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid-scale parametrizations.
description Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Pulido, Manuel Arturo, et. al., 2016. Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment. Quarterly Journal of the Royal Meteorological Society. Londres: Royal Meteorological Society, vol. 142, p. 2974–2984. ISSN 0035-9009.
0035-9009
http://repositorio.unne.edu.ar/handle/123456789/30326
identifier_str_mv Pulido, Manuel Arturo, et. al., 2016. Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment. Quarterly Journal of the Royal Meteorological Society. Londres: Royal Meteorological Society, vol. 142, p. 2974–2984. ISSN 0035-9009.
0035-9009
url http://repositorio.unne.edu.ar/handle/123456789/30326
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Meteorological Society
publisher.none.fl_str_mv Royal Meteorological Society
dc.source.none.fl_str_mv Quarterly Journal of the Royal Meteorological Society, 2016, vol. 142, p. 2974–2984.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1844621664388644864
score 12.559606