Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment
- Autores
- Pulido, Manuel Arturo; Scheffler, Guillermo Federico; Ruiz, Juan Jose; Lucini, Maria Magdalena; Tandeo, Pierre
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Oceanic and atmospheric global numerical models represent explicitly the large‐scale dynamics while the smaller‐scale processes are not resolved, so that their effects in the large‐scale dynamics are included through subgrid‐scale parametrizations. These parametrizations represent small‐scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid‐scale parametrizations but also to uncover the functional dependencies of subgrid‐scale processes as a function of large‐scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two‐scale Lorenz '96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large‐scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large‐scale variables and by a space‐dependent model error term. Then a polynomial regression is used to fit the estimated model error as a function of the large‐scale model variables in order to develop a parametrization of small‐scale dynamics. The online estimation shows a good performance when the parameter‐state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid‐scale processes. The nonlinear and non‐local dependence found in an experiment with shear‐generated small‐scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid‐scale parametrizations.
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Scheffler, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina. RIKEN Advanced Institute for Computational Science; Japón
Fil: Lucini, Maria Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Fil: Tandeo, Pierre. Lab-STICC- Pôle CID; Francia - Materia
-
Enkf
Parameter Estimation
Subgrid-Scale Schemes
Lorenz’96 System
Parametrization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22761
Ver los metadatos del registro completo
id |
CONICETDig_9d9c8cf45291b92ea514e300f4972276 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22761 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experimentPulido, Manuel ArturoScheffler, Guillermo FedericoRuiz, Juan JoseLucini, Maria MagdalenaTandeo, PierreEnkfParameter EstimationSubgrid-Scale SchemesLorenz’96 SystemParametrizationhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Oceanic and atmospheric global numerical models represent explicitly the large‐scale dynamics while the smaller‐scale processes are not resolved, so that their effects in the large‐scale dynamics are included through subgrid‐scale parametrizations. These parametrizations represent small‐scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid‐scale parametrizations but also to uncover the functional dependencies of subgrid‐scale processes as a function of large‐scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two‐scale Lorenz '96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large‐scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large‐scale variables and by a space‐dependent model error term. Then a polynomial regression is used to fit the estimated model error as a function of the large‐scale model variables in order to develop a parametrization of small‐scale dynamics. The online estimation shows a good performance when the parameter‐state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid‐scale processes. The nonlinear and non‐local dependence found in an experiment with shear‐generated small‐scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid‐scale parametrizations.Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Scheffler, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; ArgentinaFil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina. RIKEN Advanced Institute for Computational Science; JapónFil: Lucini, Maria Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Tandeo, Pierre. Lab-STICC- Pôle CID; FranciaWiley2016-10-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22761Pulido, Manuel Arturo; Scheffler, Guillermo Federico; Ruiz, Juan Jose; Lucini, Maria Magdalena; Tandeo, Pierre; Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment; Wiley; Quarterly Journal of the Royal Meteorological Society; 142; 701; 2-10-2016; 2974-29840035-90091477-870XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/qj.2879/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1002/qj.2879info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:52Zoai:ri.conicet.gov.ar:11336/22761instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:52.357CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment |
title |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment |
spellingShingle |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment Pulido, Manuel Arturo Enkf Parameter Estimation Subgrid-Scale Schemes Lorenz’96 System Parametrization |
title_short |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment |
title_full |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment |
title_fullStr |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment |
title_full_unstemmed |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment |
title_sort |
Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment |
dc.creator.none.fl_str_mv |
Pulido, Manuel Arturo Scheffler, Guillermo Federico Ruiz, Juan Jose Lucini, Maria Magdalena Tandeo, Pierre |
author |
Pulido, Manuel Arturo |
author_facet |
Pulido, Manuel Arturo Scheffler, Guillermo Federico Ruiz, Juan Jose Lucini, Maria Magdalena Tandeo, Pierre |
author_role |
author |
author2 |
Scheffler, Guillermo Federico Ruiz, Juan Jose Lucini, Maria Magdalena Tandeo, Pierre |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Enkf Parameter Estimation Subgrid-Scale Schemes Lorenz’96 System Parametrization |
topic |
Enkf Parameter Estimation Subgrid-Scale Schemes Lorenz’96 System Parametrization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Oceanic and atmospheric global numerical models represent explicitly the large‐scale dynamics while the smaller‐scale processes are not resolved, so that their effects in the large‐scale dynamics are included through subgrid‐scale parametrizations. These parametrizations represent small‐scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid‐scale parametrizations but also to uncover the functional dependencies of subgrid‐scale processes as a function of large‐scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two‐scale Lorenz '96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large‐scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large‐scale variables and by a space‐dependent model error term. Then a polynomial regression is used to fit the estimated model error as a function of the large‐scale model variables in order to develop a parametrization of small‐scale dynamics. The online estimation shows a good performance when the parameter‐state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid‐scale processes. The nonlinear and non‐local dependence found in an experiment with shear‐generated small‐scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid‐scale parametrizations. Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina Fil: Scheffler, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina. RIKEN Advanced Institute for Computational Science; Japón Fil: Lucini, Maria Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina Fil: Tandeo, Pierre. Lab-STICC- Pôle CID; Francia |
description |
Oceanic and atmospheric global numerical models represent explicitly the large‐scale dynamics while the smaller‐scale processes are not resolved, so that their effects in the large‐scale dynamics are included through subgrid‐scale parametrizations. These parametrizations represent small‐scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid‐scale parametrizations but also to uncover the functional dependencies of subgrid‐scale processes as a function of large‐scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two‐scale Lorenz '96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large‐scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large‐scale variables and by a space‐dependent model error term. Then a polynomial regression is used to fit the estimated model error as a function of the large‐scale model variables in order to develop a parametrization of small‐scale dynamics. The online estimation shows a good performance when the parameter‐state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid‐scale processes. The nonlinear and non‐local dependence found in an experiment with shear‐generated small‐scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid‐scale parametrizations. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22761 Pulido, Manuel Arturo; Scheffler, Guillermo Federico; Ruiz, Juan Jose; Lucini, Maria Magdalena; Tandeo, Pierre; Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment; Wiley; Quarterly Journal of the Royal Meteorological Society; 142; 701; 2-10-2016; 2974-2984 0035-9009 1477-870X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22761 |
identifier_str_mv |
Pulido, Manuel Arturo; Scheffler, Guillermo Federico; Ruiz, Juan Jose; Lucini, Maria Magdalena; Tandeo, Pierre; Estimation of the functional form of subgrid-scale schemes using ensemble-based data assimilation: a simple model experiment; Wiley; Quarterly Journal of the Royal Meteorological Society; 142; 701; 2-10-2016; 2974-2984 0035-9009 1477-870X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/qj.2879/abstract info:eu-repo/semantics/altIdentifier/doi/10.1002/qj.2879 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613461964750848 |
score |
13.070432 |