Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy

Autores
Pérez Rodríguez, Michael; Dirchwolf, Pamela Maia; Silva, Tiago Varão; Villafañe, Roxana Noelia; Gómez Neto, José Anchieta; Pellerano, Roberto Gerardo; Ferreira, Edilene Cristina
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Pérez Rodríguez, Michael. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
Fil: Dirchwolf, Pamela Maia. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina.
Fil: Silva, Tiago Varão. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.
Fil: Villafañe, Roxana Noelia. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química San Luis; Argentina.
Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-San Luis; Argentina.
Fil: Gómez Neto, José Anchieta. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.
Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
Fil: Ferreira, Edilene Cristina. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.
Rice is the most consumed food worldwide, therefore its designation of origin (PDO) is very useful. Laserinduced breakdown spectroscopy (LIBS) is an interesting analytical technique for PDO certification, since it provides fast multielemental analysis requiring minimal sample treatment. In this work LIBS spectral data from rice analysis were evaluated for PDO certification of Argentine brown rice. Samples from two PDOs were analyzed by LIBS coupled to spark discharge. The selection of spectral data was accomplished by extreme gradient boosting (XGBoost), an algorithm currently used in machine learning, but rarely applied in chemical issues. Emission lines of C, Ca, Fe, Mg and Na were selected, and the best performance of classification were obtained using k-nearest neighbor (k-NN) algorithm. The developed method provided 84% of accuracy, 100% of sensitivity and 78% of specificity in classification of test samples. Furthermore, it is simple, clean and can be easily applied for rice certification.
Fuente
Food Chemistry, 2019, vol. 297, p. 1-6.
Materia
Food authenticity
Pdo
Brown rice
Sd-Libs
Pattern recognition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/27982

id RIUNNE_80277e82da173d58e65d085c40ec713d
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/27982
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopyPérez Rodríguez, MichaelDirchwolf, Pamela MaiaSilva, Tiago VarãoVillafañe, Roxana NoeliaGómez Neto, José AnchietaPellerano, Roberto GerardoFerreira, Edilene CristinaFood authenticityPdoBrown riceSd-LibsPattern recognitionFil: Pérez Rodríguez, Michael. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.Fil: Dirchwolf, Pamela Maia. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina.Fil: Silva, Tiago Varão. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.Fil: Villafañe, Roxana Noelia. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química San Luis; Argentina.Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-San Luis; Argentina.Fil: Gómez Neto, José Anchieta. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.Fil: Ferreira, Edilene Cristina. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.Rice is the most consumed food worldwide, therefore its designation of origin (PDO) is very useful. Laserinduced breakdown spectroscopy (LIBS) is an interesting analytical technique for PDO certification, since it provides fast multielemental analysis requiring minimal sample treatment. In this work LIBS spectral data from rice analysis were evaluated for PDO certification of Argentine brown rice. Samples from two PDOs were analyzed by LIBS coupled to spark discharge. The selection of spectral data was accomplished by extreme gradient boosting (XGBoost), an algorithm currently used in machine learning, but rarely applied in chemical issues. Emission lines of C, Ca, Fe, Mg and Na were selected, and the best performance of classification were obtained using k-nearest neighbor (k-NN) algorithm. The developed method provided 84% of accuracy, 100% of sensitivity and 78% of specificity in classification of test samples. Furthermore, it is simple, clean and can be easily applied for rice certification.Elsevier2019-06-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfPérez Rodríguez, Michael, et. al., 2019. Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy. Food Chemistry. Países Bajos, Ámsterdam: Elsevier, vol. 297, p. 1-6. ISSN 0308-8146.0308-8146http://repositorio.unne.edu.ar/handle/123456789/27982Food Chemistry, 2019, vol. 297, p. 1-6.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-10-23T11:18:01Zoai:repositorio.unne.edu.ar:123456789/27982instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-10-23 11:18:02.207Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy
title Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy
spellingShingle Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy
Pérez Rodríguez, Michael
Food authenticity
Pdo
Brown rice
Sd-Libs
Pattern recognition
title_short Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy
title_full Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy
title_fullStr Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy
title_full_unstemmed Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy
title_sort Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy
dc.creator.none.fl_str_mv Pérez Rodríguez, Michael
Dirchwolf, Pamela Maia
Silva, Tiago Varão
Villafañe, Roxana Noelia
Gómez Neto, José Anchieta
Pellerano, Roberto Gerardo
Ferreira, Edilene Cristina
author Pérez Rodríguez, Michael
author_facet Pérez Rodríguez, Michael
Dirchwolf, Pamela Maia
Silva, Tiago Varão
Villafañe, Roxana Noelia
Gómez Neto, José Anchieta
Pellerano, Roberto Gerardo
Ferreira, Edilene Cristina
author_role author
author2 Dirchwolf, Pamela Maia
Silva, Tiago Varão
Villafañe, Roxana Noelia
Gómez Neto, José Anchieta
Pellerano, Roberto Gerardo
Ferreira, Edilene Cristina
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Food authenticity
Pdo
Brown rice
Sd-Libs
Pattern recognition
topic Food authenticity
Pdo
Brown rice
Sd-Libs
Pattern recognition
dc.description.none.fl_txt_mv Fil: Pérez Rodríguez, Michael. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
Fil: Dirchwolf, Pamela Maia. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina.
Fil: Silva, Tiago Varão. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.
Fil: Villafañe, Roxana Noelia. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química San Luis; Argentina.
Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-San Luis; Argentina.
Fil: Gómez Neto, José Anchieta. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.
Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
Fil: Ferreira, Edilene Cristina. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.
Rice is the most consumed food worldwide, therefore its designation of origin (PDO) is very useful. Laserinduced breakdown spectroscopy (LIBS) is an interesting analytical technique for PDO certification, since it provides fast multielemental analysis requiring minimal sample treatment. In this work LIBS spectral data from rice analysis were evaluated for PDO certification of Argentine brown rice. Samples from two PDOs were analyzed by LIBS coupled to spark discharge. The selection of spectral data was accomplished by extreme gradient boosting (XGBoost), an algorithm currently used in machine learning, but rarely applied in chemical issues. Emission lines of C, Ca, Fe, Mg and Na were selected, and the best performance of classification were obtained using k-nearest neighbor (k-NN) algorithm. The developed method provided 84% of accuracy, 100% of sensitivity and 78% of specificity in classification of test samples. Furthermore, it is simple, clean and can be easily applied for rice certification.
description Fil: Pérez Rodríguez, Michael. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Pérez Rodríguez, Michael, et. al., 2019. Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy. Food Chemistry. Países Bajos, Ámsterdam: Elsevier, vol. 297, p. 1-6. ISSN 0308-8146.
0308-8146
http://repositorio.unne.edu.ar/handle/123456789/27982
identifier_str_mv Pérez Rodríguez, Michael, et. al., 2019. Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy. Food Chemistry. Países Bajos, Ámsterdam: Elsevier, vol. 297, p. 1-6. ISSN 0308-8146.
0308-8146
url http://repositorio.unne.edu.ar/handle/123456789/27982
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Food Chemistry, 2019, vol. 297, p. 1-6.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1846787771675443200
score 12.982451