Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy
- Autores
- Pérez Rodríguez, Michael; Mendoza, Alberto; González, Lucy T.; Lima Vieira, Alan; Pellerano, Roberto Gerardo; Gomes Neto, José Anchieta; Ferreira, Edilene Cristina
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice’s value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visual inspection. These methods have shown subjectivity and inefficiency for large-scale analyses. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique showing attractive features due to how quick the analysis can be carried out and its capability of providing spectra that are true fingerprints of the sample’s elemental composition. In this work, LIBS performance was evaluated for labeling rice according to grain quality features. The LIBS spectra of samples with their grain quality numerically described as Type 1, 2, and 3 were measured. Several spectral processing methods were evaluated when modeling a k-nearest neighbors (k-NN) classifier. Variable selection was also carried out by principal component analysis (PCA), and then the optimal k-value was selected. The best result was obtained by applying spectrum smoothing followed by normalization by using the first fifteen principal components (PCs) as input variables and k = 9. Under these conditions, the method showed excellent performance, achieving sample classification with 94% overall prediction accuracy. The sensitivities ranged from 90 to 100%, and specificities were in the range of 92–100%. The proposed method has remarkable characteristics, e.g., analytical speed and analysis guided by chemical responses; therefore, the method is not susceptible to subjectivity errors.
Fil: Pérez Rodríguez, Michael. Instituto Tecnologico de Monterrey.; México. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Mendoza, Alberto. Instituto Tecnologico de Monterrey.; México
Fil: González, Lucy T.. Instituto Tecnologico de Monterrey.; México
Fil: Lima Vieira, Alan. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Gomes Neto, José Anchieta. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil
Fil: Ferreira, Edilene Cristina. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil - Materia
-
RICE
GRAIN QUALITY
LIBS
SPECTRAL PROCESSING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214011
Ver los metadatos del registro completo
| id |
CONICETDig_de2aae1c0d0b54b67343843833d11e5a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214011 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown SpectroscopyPérez Rodríguez, MichaelMendoza, AlbertoGonzález, Lucy T.Lima Vieira, AlanPellerano, Roberto GerardoGomes Neto, José AnchietaFerreira, Edilene CristinaRICEGRAIN QUALITYLIBSSPECTRAL PROCESSINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice’s value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visual inspection. These methods have shown subjectivity and inefficiency for large-scale analyses. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique showing attractive features due to how quick the analysis can be carried out and its capability of providing spectra that are true fingerprints of the sample’s elemental composition. In this work, LIBS performance was evaluated for labeling rice according to grain quality features. The LIBS spectra of samples with their grain quality numerically described as Type 1, 2, and 3 were measured. Several spectral processing methods were evaluated when modeling a k-nearest neighbors (k-NN) classifier. Variable selection was also carried out by principal component analysis (PCA), and then the optimal k-value was selected. The best result was obtained by applying spectrum smoothing followed by normalization by using the first fifteen principal components (PCs) as input variables and k = 9. Under these conditions, the method showed excellent performance, achieving sample classification with 94% overall prediction accuracy. The sensitivities ranged from 90 to 100%, and specificities were in the range of 92–100%. The proposed method has remarkable characteristics, e.g., analytical speed and analysis guided by chemical responses; therefore, the method is not susceptible to subjectivity errors.Fil: Pérez Rodríguez, Michael. Instituto Tecnologico de Monterrey.; México. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Mendoza, Alberto. Instituto Tecnologico de Monterrey.; MéxicoFil: González, Lucy T.. Instituto Tecnologico de Monterrey.; MéxicoFil: Lima Vieira, Alan. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Gomes Neto, José Anchieta. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Ferreira, Edilene Cristina. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilMDPI2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214011Pérez Rodríguez, Michael; Mendoza, Alberto; González, Lucy T.; Lima Vieira, Alan; Pellerano, Roberto Gerardo; et al.; Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy; MDPI; Foods; 12; 2; 1-2023; 365-3732304-8158CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2304-8158/12/2/365info:eu-repo/semantics/altIdentifier/doi/10.3390/foods12020365info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:14:08Zoai:ri.conicet.gov.ar:11336/214011instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:14:08.85CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
| title |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
| spellingShingle |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy Pérez Rodríguez, Michael RICE GRAIN QUALITY LIBS SPECTRAL PROCESSING |
| title_short |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
| title_full |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
| title_fullStr |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
| title_full_unstemmed |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
| title_sort |
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy |
| dc.creator.none.fl_str_mv |
Pérez Rodríguez, Michael Mendoza, Alberto González, Lucy T. Lima Vieira, Alan Pellerano, Roberto Gerardo Gomes Neto, José Anchieta Ferreira, Edilene Cristina |
| author |
Pérez Rodríguez, Michael |
| author_facet |
Pérez Rodríguez, Michael Mendoza, Alberto González, Lucy T. Lima Vieira, Alan Pellerano, Roberto Gerardo Gomes Neto, José Anchieta Ferreira, Edilene Cristina |
| author_role |
author |
| author2 |
Mendoza, Alberto González, Lucy T. Lima Vieira, Alan Pellerano, Roberto Gerardo Gomes Neto, José Anchieta Ferreira, Edilene Cristina |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
RICE GRAIN QUALITY LIBS SPECTRAL PROCESSING |
| topic |
RICE GRAIN QUALITY LIBS SPECTRAL PROCESSING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice’s value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visual inspection. These methods have shown subjectivity and inefficiency for large-scale analyses. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique showing attractive features due to how quick the analysis can be carried out and its capability of providing spectra that are true fingerprints of the sample’s elemental composition. In this work, LIBS performance was evaluated for labeling rice according to grain quality features. The LIBS spectra of samples with their grain quality numerically described as Type 1, 2, and 3 were measured. Several spectral processing methods were evaluated when modeling a k-nearest neighbors (k-NN) classifier. Variable selection was also carried out by principal component analysis (PCA), and then the optimal k-value was selected. The best result was obtained by applying spectrum smoothing followed by normalization by using the first fifteen principal components (PCs) as input variables and k = 9. Under these conditions, the method showed excellent performance, achieving sample classification with 94% overall prediction accuracy. The sensitivities ranged from 90 to 100%, and specificities were in the range of 92–100%. The proposed method has remarkable characteristics, e.g., analytical speed and analysis guided by chemical responses; therefore, the method is not susceptible to subjectivity errors. Fil: Pérez Rodríguez, Michael. Instituto Tecnologico de Monterrey.; México. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Mendoza, Alberto. Instituto Tecnologico de Monterrey.; México Fil: González, Lucy T.. Instituto Tecnologico de Monterrey.; México Fil: Lima Vieira, Alan. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Gomes Neto, José Anchieta. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil Fil: Ferreira, Edilene Cristina. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil |
| description |
Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice’s value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visual inspection. These methods have shown subjectivity and inefficiency for large-scale analyses. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique showing attractive features due to how quick the analysis can be carried out and its capability of providing spectra that are true fingerprints of the sample’s elemental composition. In this work, LIBS performance was evaluated for labeling rice according to grain quality features. The LIBS spectra of samples with their grain quality numerically described as Type 1, 2, and 3 were measured. Several spectral processing methods were evaluated when modeling a k-nearest neighbors (k-NN) classifier. Variable selection was also carried out by principal component analysis (PCA), and then the optimal k-value was selected. The best result was obtained by applying spectrum smoothing followed by normalization by using the first fifteen principal components (PCs) as input variables and k = 9. Under these conditions, the method showed excellent performance, achieving sample classification with 94% overall prediction accuracy. The sensitivities ranged from 90 to 100%, and specificities were in the range of 92–100%. The proposed method has remarkable characteristics, e.g., analytical speed and analysis guided by chemical responses; therefore, the method is not susceptible to subjectivity errors. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214011 Pérez Rodríguez, Michael; Mendoza, Alberto; González, Lucy T.; Lima Vieira, Alan; Pellerano, Roberto Gerardo; et al.; Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy; MDPI; Foods; 12; 2; 1-2023; 365-373 2304-8158 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/214011 |
| identifier_str_mv |
Pérez Rodríguez, Michael; Mendoza, Alberto; González, Lucy T.; Lima Vieira, Alan; Pellerano, Roberto Gerardo; et al.; Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy; MDPI; Foods; 12; 2; 1-2023; 365-373 2304-8158 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2304-8158/12/2/365 info:eu-repo/semantics/altIdentifier/doi/10.3390/foods12020365 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782547711754240 |
| score |
12.982451 |