A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis

Autores
Mroginski, Javier Luis; Beneyto, Pablo Alejandro; Gutiérrez, Guillermo José; Di Rado, Héctor Ariel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Gutiérrez, Guillermo José. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Purpose – There are many problems in civil or mechanical engineering related to structural design. In such a case, the solution techniques which lead to deterministic results are no longer valid due to the heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures. Design/methodology/approach – The main feature of this genetic algorithm approach is the introduction of a selective-smart method developed in order to improve the convergence rate of large optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis performed over each variable, in order to reduce the search space of the evolutionary process. In order to account for the optimization of the total weight, the displacement (of a specific section) and the internal stresses distribution of the structure a multiobjective optimization function was proposed. Findings – The numerical results presented in this paper show a significant improvement in the convergence rate as well as an important reduction in the relative error, compared to the exact solution. Originality/value – The variables sensitivity analysis put forward in this approach introduces a significant improvement in the convergence rate of the genetic algorithm proposed in this paper.
Fuente
Multidiscipline Modeling in Materials and Structures, 2016, vol. 12, no. 2, p. 423-435.
Materia
Sensitivity analysis
Genetic algorithm
Finite element method
3D bars structure
Multiobjective optimization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/47729

id RIUNNE_57c7e0facdae2718ab0836cd9167134e
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/47729
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysisMroginski, Javier LuisBeneyto, Pablo AlejandroGutiérrez, Guillermo JoséDi Rado, Héctor ArielSensitivity analysisGenetic algorithmFinite element method3D bars structureMultiobjective optimizationFil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Gutiérrez, Guillermo José. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Purpose – There are many problems in civil or mechanical engineering related to structural design. In such a case, the solution techniques which lead to deterministic results are no longer valid due to the heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures. Design/methodology/approach – The main feature of this genetic algorithm approach is the introduction of a selective-smart method developed in order to improve the convergence rate of large optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis performed over each variable, in order to reduce the search space of the evolutionary process. In order to account for the optimization of the total weight, the displacement (of a specific section) and the internal stresses distribution of the structure a multiobjective optimization function was proposed. Findings – The numerical results presented in this paper show a significant improvement in the convergence rate as well as an important reduction in the relative error, compared to the exact solution. Originality/value – The variables sensitivity analysis put forward in this approach introduces a significant improvement in the convergence rate of the genetic algorithm proposed in this paper.Emerald Group Publishing Limited2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfMroginski, Javier Luis, et al., 2016. A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis. Multidiscipline Modeling in Materials and Structures. Bingley: Emerald Group Publishing Limited, vol. 12, no. 2, p. 423-435. ISSN 1573-6105.1573-6105http://repositorio.unne.edu.ar/handle/123456789/47729Multidiscipline Modeling in Materials and Structures, 2016, vol. 12, no. 2, p. 423-435.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-04T11:14:27Zoai:repositorio.unne.edu.ar:123456789/47729instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-04 11:14:28.173Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
title A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
spellingShingle A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
Mroginski, Javier Luis
Sensitivity analysis
Genetic algorithm
Finite element method
3D bars structure
Multiobjective optimization
title_short A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
title_full A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
title_fullStr A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
title_full_unstemmed A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
title_sort A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
dc.creator.none.fl_str_mv Mroginski, Javier Luis
Beneyto, Pablo Alejandro
Gutiérrez, Guillermo José
Di Rado, Héctor Ariel
author Mroginski, Javier Luis
author_facet Mroginski, Javier Luis
Beneyto, Pablo Alejandro
Gutiérrez, Guillermo José
Di Rado, Héctor Ariel
author_role author
author2 Beneyto, Pablo Alejandro
Gutiérrez, Guillermo José
Di Rado, Héctor Ariel
author2_role author
author
author
dc.subject.none.fl_str_mv Sensitivity analysis
Genetic algorithm
Finite element method
3D bars structure
Multiobjective optimization
topic Sensitivity analysis
Genetic algorithm
Finite element method
3D bars structure
Multiobjective optimization
dc.description.none.fl_txt_mv Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Gutiérrez, Guillermo José. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Purpose – There are many problems in civil or mechanical engineering related to structural design. In such a case, the solution techniques which lead to deterministic results are no longer valid due to the heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures. Design/methodology/approach – The main feature of this genetic algorithm approach is the introduction of a selective-smart method developed in order to improve the convergence rate of large optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis performed over each variable, in order to reduce the search space of the evolutionary process. In order to account for the optimization of the total weight, the displacement (of a specific section) and the internal stresses distribution of the structure a multiobjective optimization function was proposed. Findings – The numerical results presented in this paper show a significant improvement in the convergence rate as well as an important reduction in the relative error, compared to the exact solution. Originality/value – The variables sensitivity analysis put forward in this approach introduces a significant improvement in the convergence rate of the genetic algorithm proposed in this paper.
description Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Mroginski, Javier Luis, et al., 2016. A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis. Multidiscipline Modeling in Materials and Structures. Bingley: Emerald Group Publishing Limited, vol. 12, no. 2, p. 423-435. ISSN 1573-6105.
1573-6105
http://repositorio.unne.edu.ar/handle/123456789/47729
identifier_str_mv Mroginski, Javier Luis, et al., 2016. A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis. Multidiscipline Modeling in Materials and Structures. Bingley: Emerald Group Publishing Limited, vol. 12, no. 2, p. 423-435. ISSN 1573-6105.
1573-6105
url http://repositorio.unne.edu.ar/handle/123456789/47729
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Emerald Group Publishing Limited
publisher.none.fl_str_mv Emerald Group Publishing Limited
dc.source.none.fl_str_mv Multidiscipline Modeling in Materials and Structures, 2016, vol. 12, no. 2, p. 423-435.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1842344225129103360
score 12.623145