A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis
- Autores
- Mroginski, Javier Luis; Beneyto, Pablo Alejandro; Gutiérrez, Guillermo José; Di Rado, Héctor Ariel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Gutiérrez, Guillermo José. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.
Purpose – There are many problems in civil or mechanical engineering related to structural design. In such a case, the solution techniques which lead to deterministic results are no longer valid due to the heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures. Design/methodology/approach – The main feature of this genetic algorithm approach is the introduction of a selective-smart method developed in order to improve the convergence rate of large optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis performed over each variable, in order to reduce the search space of the evolutionary process. In order to account for the optimization of the total weight, the displacement (of a specific section) and the internal stresses distribution of the structure a multiobjective optimization function was proposed. Findings – The numerical results presented in this paper show a significant improvement in the convergence rate as well as an important reduction in the relative error, compared to the exact solution. Originality/value – The variables sensitivity analysis put forward in this approach introduces a significant improvement in the convergence rate of the genetic algorithm proposed in this paper. - Fuente
- Multidiscipline Modeling in Materials and Structures, 2016, vol. 12, no. 2, p. 423-435.
- Materia
-
Sensitivity analysis
Genetic algorithm
Finite element method
3D bars structure
Multiobjective optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional del Nordeste
- OAI Identificador
- oai:repositorio.unne.edu.ar:123456789/47729
Ver los metadatos del registro completo
id |
RIUNNE_57c7e0facdae2718ab0836cd9167134e |
---|---|
oai_identifier_str |
oai:repositorio.unne.edu.ar:123456789/47729 |
network_acronym_str |
RIUNNE |
repository_id_str |
4871 |
network_name_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
spelling |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysisMroginski, Javier LuisBeneyto, Pablo AlejandroGutiérrez, Guillermo JoséDi Rado, Héctor ArielSensitivity analysisGenetic algorithmFinite element method3D bars structureMultiobjective optimizationFil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Gutiérrez, Guillermo José. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina.Purpose – There are many problems in civil or mechanical engineering related to structural design. In such a case, the solution techniques which lead to deterministic results are no longer valid due to the heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures. Design/methodology/approach – The main feature of this genetic algorithm approach is the introduction of a selective-smart method developed in order to improve the convergence rate of large optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis performed over each variable, in order to reduce the search space of the evolutionary process. In order to account for the optimization of the total weight, the displacement (of a specific section) and the internal stresses distribution of the structure a multiobjective optimization function was proposed. Findings – The numerical results presented in this paper show a significant improvement in the convergence rate as well as an important reduction in the relative error, compared to the exact solution. Originality/value – The variables sensitivity analysis put forward in this approach introduces a significant improvement in the convergence rate of the genetic algorithm proposed in this paper.Emerald Group Publishing Limited2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfMroginski, Javier Luis, et al., 2016. A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis. Multidiscipline Modeling in Materials and Structures. Bingley: Emerald Group Publishing Limited, vol. 12, no. 2, p. 423-435. ISSN 1573-6105.1573-6105http://repositorio.unne.edu.ar/handle/123456789/47729Multidiscipline Modeling in Materials and Structures, 2016, vol. 12, no. 2, p. 423-435.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-04T11:14:27Zoai:repositorio.unne.edu.ar:123456789/47729instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-04 11:14:28.173Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse |
dc.title.none.fl_str_mv |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis |
title |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis |
spellingShingle |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis Mroginski, Javier Luis Sensitivity analysis Genetic algorithm Finite element method 3D bars structure Multiobjective optimization |
title_short |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis |
title_full |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis |
title_fullStr |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis |
title_full_unstemmed |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis |
title_sort |
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis |
dc.creator.none.fl_str_mv |
Mroginski, Javier Luis Beneyto, Pablo Alejandro Gutiérrez, Guillermo José Di Rado, Héctor Ariel |
author |
Mroginski, Javier Luis |
author_facet |
Mroginski, Javier Luis Beneyto, Pablo Alejandro Gutiérrez, Guillermo José Di Rado, Héctor Ariel |
author_role |
author |
author2 |
Beneyto, Pablo Alejandro Gutiérrez, Guillermo José Di Rado, Héctor Ariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Sensitivity analysis Genetic algorithm Finite element method 3D bars structure Multiobjective optimization |
topic |
Sensitivity analysis Genetic algorithm Finite element method 3D bars structure Multiobjective optimization |
dc.description.none.fl_txt_mv |
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Fil: Gutiérrez, Guillermo José. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Fil: Di Rado, Héctor Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Purpose – There are many problems in civil or mechanical engineering related to structural design. In such a case, the solution techniques which lead to deterministic results are no longer valid due to the heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures. Design/methodology/approach – The main feature of this genetic algorithm approach is the introduction of a selective-smart method developed in order to improve the convergence rate of large optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis performed over each variable, in order to reduce the search space of the evolutionary process. In order to account for the optimization of the total weight, the displacement (of a specific section) and the internal stresses distribution of the structure a multiobjective optimization function was proposed. Findings – The numerical results presented in this paper show a significant improvement in the convergence rate as well as an important reduction in the relative error, compared to the exact solution. Originality/value – The variables sensitivity analysis put forward in this approach introduces a significant improvement in the convergence rate of the genetic algorithm proposed in this paper. |
description |
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Mroginski, Javier Luis, et al., 2016. A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis. Multidiscipline Modeling in Materials and Structures. Bingley: Emerald Group Publishing Limited, vol. 12, no. 2, p. 423-435. ISSN 1573-6105. 1573-6105 http://repositorio.unne.edu.ar/handle/123456789/47729 |
identifier_str_mv |
Mroginski, Javier Luis, et al., 2016. A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis. Multidiscipline Modeling in Materials and Structures. Bingley: Emerald Group Publishing Limited, vol. 12, no. 2, p. 423-435. ISSN 1573-6105. 1573-6105 |
url |
http://repositorio.unne.edu.ar/handle/123456789/47729 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Emerald Group Publishing Limited |
publisher.none.fl_str_mv |
Emerald Group Publishing Limited |
dc.source.none.fl_str_mv |
Multidiscipline Modeling in Materials and Structures, 2016, vol. 12, no. 2, p. 423-435. reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) instname:Universidad Nacional del Nordeste |
reponame_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
collection |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
instname_str |
Universidad Nacional del Nordeste |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste |
repository.mail.fl_str_mv |
ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar |
_version_ |
1842344225129103360 |
score |
12.623145 |