Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels
- Autores
- Gambini, María Juliana; Cassetti, Julia Analía; Lucini, María Magdalena; Frery, Alejandro César
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Gambini, María Juliana. Instituto Tecnológico de Buenos Aires; Argentina.
Fil: Gambini, María Juliana. Universidad Nacional Tres de Febrero; Argentina.
Fil: Cassetti, Julia Analía. Universidad Nacional de General Sarmiento; Argentina.
Fil: Lucini, María Magdalena. Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste; Argentina.
Fil: Frery, Alejandro César. Laboratório de Computação Científica e Análise Numérica. Universidade Federal de Alagoas; Brasil.
The Statistical modeling of the data is essential in order to interpret synthetic aperture radar (SAR) images. Speckled data have been described under the multiplicative model using the G family of distributions, which is able to describe rough and extremely rough areas better than the K distribution. The survey article discusses in detail several statistical models for this kind of data. Under the G model, different degrees of roughness are associated with different parameter values; therefore, it is of paramount importance to have high quality estimators. Several works have been devoted to the subject of improving estimation with two main venues of research, namely, analytic and resampling procedures. - Fuente
- IEEE Journal of selected topics in applied earth observations and remote sensing, 2015, vol. 8, no. 1, p. 365-375.
- Materia
-
Feature extraction
Image texture analysis
Speckle
Statistics
Synthetic apertura radar - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional del Nordeste
- OAI Identificador
- oai:repositorio.unne.edu.ar:123456789/55296
Ver los metadatos del registro completo
id |
RIUNNE_00ce81db58462900ef9b3a6f3ec65a2d |
---|---|
oai_identifier_str |
oai:repositorio.unne.edu.ar:123456789/55296 |
network_acronym_str |
RIUNNE |
repository_id_str |
4871 |
network_name_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
spelling |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernelsGambini, María JulianaCassetti, Julia AnalíaLucini, María MagdalenaFrery, Alejandro CésarFeature extractionImage texture analysisSpeckleStatisticsSynthetic apertura radarFil: Gambini, María Juliana. Instituto Tecnológico de Buenos Aires; Argentina.Fil: Gambini, María Juliana. Universidad Nacional Tres de Febrero; Argentina.Fil: Cassetti, Julia Analía. Universidad Nacional de General Sarmiento; Argentina.Fil: Lucini, María Magdalena. Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste; Argentina.Fil: Frery, Alejandro César. Laboratório de Computação Científica e Análise Numérica. Universidade Federal de Alagoas; Brasil.The Statistical modeling of the data is essential in order to interpret synthetic aperture radar (SAR) images. Speckled data have been described under the multiplicative model using the G family of distributions, which is able to describe rough and extremely rough areas better than the K distribution. The survey article discusses in detail several statistical models for this kind of data. Under the G model, different degrees of roughness are associated with different parameter values; therefore, it is of paramount importance to have high quality estimators. Several works have been devoted to the subject of improving estimation with two main venues of research, namely, analytic and resampling procedures.Institute of Electrical and Electronics Engineers Inc.2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 365-375application/pdfGambini, María Juliana, et al., 2015. Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels. IEEE Journal of selected topics in applied earth observations and remote sensing. New York: Institute of Electrical and Electronics Engineers Inc., vol. 8, no. 1, p. 365-375. ISSN 1939-1404.1939-1404http://repositorio.unne.edu.ar/handle/123456789/55296IEEE Journal of selected topics in applied earth observations and remote sensing, 2015, vol. 8, no. 1, p. 365-375.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenghttp://dx.doi.org/10.1109/JSTARS.2014.2346017info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-10-16T10:07:27Zoai:repositorio.unne.edu.ar:123456789/55296instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-10-16 10:07:27.674Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse |
dc.title.none.fl_str_mv |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
spellingShingle |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels Gambini, María Juliana Feature extraction Image texture analysis Speckle Statistics Synthetic apertura radar |
title_short |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_full |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_fullStr |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_full_unstemmed |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
title_sort |
Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels |
dc.creator.none.fl_str_mv |
Gambini, María Juliana Cassetti, Julia Analía Lucini, María Magdalena Frery, Alejandro César |
author |
Gambini, María Juliana |
author_facet |
Gambini, María Juliana Cassetti, Julia Analía Lucini, María Magdalena Frery, Alejandro César |
author_role |
author |
author2 |
Cassetti, Julia Analía Lucini, María Magdalena Frery, Alejandro César |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Feature extraction Image texture analysis Speckle Statistics Synthetic apertura radar |
topic |
Feature extraction Image texture analysis Speckle Statistics Synthetic apertura radar |
dc.description.none.fl_txt_mv |
Fil: Gambini, María Juliana. Instituto Tecnológico de Buenos Aires; Argentina. Fil: Gambini, María Juliana. Universidad Nacional Tres de Febrero; Argentina. Fil: Cassetti, Julia Analía. Universidad Nacional de General Sarmiento; Argentina. Fil: Lucini, María Magdalena. Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste; Argentina. Fil: Frery, Alejandro César. Laboratório de Computação Científica e Análise Numérica. Universidade Federal de Alagoas; Brasil. The Statistical modeling of the data is essential in order to interpret synthetic aperture radar (SAR) images. Speckled data have been described under the multiplicative model using the G family of distributions, which is able to describe rough and extremely rough areas better than the K distribution. The survey article discusses in detail several statistical models for this kind of data. Under the G model, different degrees of roughness are associated with different parameter values; therefore, it is of paramount importance to have high quality estimators. Several works have been devoted to the subject of improving estimation with two main venues of research, namely, analytic and resampling procedures. |
description |
Fil: Gambini, María Juliana. Instituto Tecnológico de Buenos Aires; Argentina. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Gambini, María Juliana, et al., 2015. Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels. IEEE Journal of selected topics in applied earth observations and remote sensing. New York: Institute of Electrical and Electronics Engineers Inc., vol. 8, no. 1, p. 365-375. ISSN 1939-1404. 1939-1404 http://repositorio.unne.edu.ar/handle/123456789/55296 |
identifier_str_mv |
Gambini, María Juliana, et al., 2015. Parameter estimation in SAR imagery using stochastic distances and asymmetric kernels. IEEE Journal of selected topics in applied earth observations and remote sensing. New York: Institute of Electrical and Electronics Engineers Inc., vol. 8, no. 1, p. 365-375. ISSN 1939-1404. 1939-1404 |
url |
http://repositorio.unne.edu.ar/handle/123456789/55296 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1109/JSTARS.2014.2346017 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
dc.format.none.fl_str_mv |
application/pdf p. 365-375 application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
IEEE Journal of selected topics in applied earth observations and remote sensing, 2015, vol. 8, no. 1, p. 365-375. reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) instname:Universidad Nacional del Nordeste |
reponame_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
collection |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
instname_str |
Universidad Nacional del Nordeste |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste |
repository.mail.fl_str_mv |
ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar |
_version_ |
1846146006049095680 |
score |
12.712165 |