On two variants of split graphs : 2-unipolar graph and k-probe-split graph

Autores
Grippo, Luciano Norberto; Moyano, Verónica A.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Revista con referato
Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
A graph is called split if its vertex set can be partitioned into a stable set and a clique. In this article, we studied two variants of split graphs. A graph G is polar if its vertex set can be partitioned into two sets A and B such that G[A] is a complete multipartite graph and G[B] is a disjoint union of complete graphs. A 2-unipolar graph is a polar graph G such that G[A] is a clique and G[B] is the disjoint union of complete graphs with at most two vertices. We present a minimal forbidden induced subgraph characterization for 2-unipolar graphs. In addition, we show that they can be represented as an intersection of substars of special cacti. Let G be a graph class, the G-width of a graph G is the minimum positive integer k such that there exist k independent sets N1, … , Nk such that a set F of nonedges of G, whose endpoints belong to some Ni with i = 1, … , k, can be added so that the resulting graph G' belongs to G. We say that a graph G is k-probe-G if it has G-width at most k and when G is the class of split graphs it is denominated k-probe-split. We prove that deciding, given a graph G and a positive integer k, whether G is a h-probe-split graph for some h ? k is NP-complete. Besides, a characterization by minimal forbidden induced subgraphs for 2-probe-split cographs is presented.
Fuente
RAIRO-Operation Research. Jul. 2024; 58(4): 3597-3606
https://www.rairo-ro.org/articles/ro/abs/2024/04/contents/contents.html
Materia
2-unipolar graph
K-probe-split graph
Split-width
Matemáticas
Matemática Aplicada
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/2670

id RIUNGS_2847cfecc1ffd7d01e1822cb65525559
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/2670
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling On two variants of split graphs : 2-unipolar graph and k-probe-split graphGrippo, Luciano NorbertoMoyano, Verónica A.2-unipolar graphK-probe-split graphSplit-widthMatemáticasMatemática AplicadaRevista con referatoFil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.A graph is called split if its vertex set can be partitioned into a stable set and a clique. In this article, we studied two variants of split graphs. A graph G is polar if its vertex set can be partitioned into two sets A and B such that G[A] is a complete multipartite graph and G[B] is a disjoint union of complete graphs. A 2-unipolar graph is a polar graph G such that G[A] is a clique and G[B] is the disjoint union of complete graphs with at most two vertices. We present a minimal forbidden induced subgraph characterization for 2-unipolar graphs. In addition, we show that they can be represented as an intersection of substars of special cacti. Let G be a graph class, the G-width of a graph G is the minimum positive integer k such that there exist k independent sets N1, … , Nk such that a set F of nonedges of G, whose endpoints belong to some Ni with i = 1, … , k, can be added so that the resulting graph G' belongs to G. We say that a graph G is k-probe-G if it has G-width at most k and when G is the class of split graphs it is denominated k-probe-split. We prove that deciding, given a graph G and a positive integer k, whether G is a h-probe-split graph for some h ? k is NP-complete. Besides, a characterization by minimal forbidden induced subgraphs for 2-probe-split cographs is presented.EDP Sciences2026-01-14T10:56:59Z2026-01-14T10:56:59Z2024info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfGrippo, L. N. y Moyano, V. A. (2024). On two variants of split graphs: 2-unipolar graph and k-probe-split graph. RAIRO-Operation Research, 58(4), 3597-3606.0399-0559http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2670RAIRO-Operation Research. Jul. 2024; 58(4): 3597-3606https://www.rairo-ro.org/articles/ro/abs/2024/04/contents/contents.htmlreponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1051/ro/2023149info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2026-02-04T10:48:40Zoai:repositorio.ungs.edu.ar:UNGS/2670instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2026-02-04 10:48:40.589Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv On two variants of split graphs : 2-unipolar graph and k-probe-split graph
title On two variants of split graphs : 2-unipolar graph and k-probe-split graph
spellingShingle On two variants of split graphs : 2-unipolar graph and k-probe-split graph
Grippo, Luciano Norberto
2-unipolar graph
K-probe-split graph
Split-width
Matemáticas
Matemática Aplicada
title_short On two variants of split graphs : 2-unipolar graph and k-probe-split graph
title_full On two variants of split graphs : 2-unipolar graph and k-probe-split graph
title_fullStr On two variants of split graphs : 2-unipolar graph and k-probe-split graph
title_full_unstemmed On two variants of split graphs : 2-unipolar graph and k-probe-split graph
title_sort On two variants of split graphs : 2-unipolar graph and k-probe-split graph
dc.creator.none.fl_str_mv Grippo, Luciano Norberto
Moyano, Verónica A.
author Grippo, Luciano Norberto
author_facet Grippo, Luciano Norberto
Moyano, Verónica A.
author_role author
author2 Moyano, Verónica A.
author2_role author
dc.subject.none.fl_str_mv 2-unipolar graph
K-probe-split graph
Split-width
Matemáticas
Matemática Aplicada
topic 2-unipolar graph
K-probe-split graph
Split-width
Matemáticas
Matemática Aplicada
dc.description.none.fl_txt_mv Revista con referato
Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
A graph is called split if its vertex set can be partitioned into a stable set and a clique. In this article, we studied two variants of split graphs. A graph G is polar if its vertex set can be partitioned into two sets A and B such that G[A] is a complete multipartite graph and G[B] is a disjoint union of complete graphs. A 2-unipolar graph is a polar graph G such that G[A] is a clique and G[B] is the disjoint union of complete graphs with at most two vertices. We present a minimal forbidden induced subgraph characterization for 2-unipolar graphs. In addition, we show that they can be represented as an intersection of substars of special cacti. Let G be a graph class, the G-width of a graph G is the minimum positive integer k such that there exist k independent sets N1, … , Nk such that a set F of nonedges of G, whose endpoints belong to some Ni with i = 1, … , k, can be added so that the resulting graph G' belongs to G. We say that a graph G is k-probe-G if it has G-width at most k and when G is the class of split graphs it is denominated k-probe-split. We prove that deciding, given a graph G and a positive integer k, whether G is a h-probe-split graph for some h ? k is NP-complete. Besides, a characterization by minimal forbidden induced subgraphs for 2-probe-split cographs is presented.
description Revista con referato
publishDate 2024
dc.date.none.fl_str_mv 2024
2026-01-14T10:56:59Z
2026-01-14T10:56:59Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Grippo, L. N. y Moyano, V. A. (2024). On two variants of split graphs: 2-unipolar graph and k-probe-split graph. RAIRO-Operation Research, 58(4), 3597-3606.
0399-0559
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2670
identifier_str_mv Grippo, L. N. y Moyano, V. A. (2024). On two variants of split graphs: 2-unipolar graph and k-probe-split graph. RAIRO-Operation Research, 58(4), 3597-3606.
0399-0559
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2670
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1051/ro/2023149
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv RAIRO-Operation Research. Jul. 2024; 58(4): 3597-3606
https://www.rairo-ro.org/articles/ro/abs/2024/04/contents/contents.html
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1856205329332699136
score 13.106097