Total dominating sequences in trees, split graphs, and under modular decomposition
- Autores
- Brešar, Boštjan; Kos, Tim; Nasini, Graciela Leonor; Torres, Pablo Daniel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A sequence of vertices in a graph G with no isolated vertices is called a total dominating sequence if every vertex in the sequence totally dominates at least one vertex that was not totally dominated by preceding vertices in the sequence, and, at the end all vertices of G are totally dominated (by definition a vertex totally dominates its neighbors). The maximum length of a total dominating sequence is called the Grundy total domination number, γgr t(G), of G, as introduced in Brešar et al. (2016). In this paper we continue the investigation of this concept, mainly from the algorithmic point of view. While it was known that the decision version of the problem is NP-complete in bipartite graphs, we show that this is also true if we restrict to split graphs. A linear time algorithm for determining the Grundy total domination number of an arbitrary forest T is presented, based on the formula γgr t(T)=2τ(T), where τ(T) is the vertex cover number of T. A similar efficient algorithm is presented for bipartite distance-hereditary graphs. Using the modular decomposition of a graph, we present a frame for obtaining polynomial algorithms for this problem in classes of graphs having relatively simple modular subgraphs. In particular, a linear algorithm for determining the Grundy total domination number of P4-tidy graphs is presented. In addition, we prove a realization result by exhibiting a family of graphs Gk such that γgr t(Gk)=k, for any k∈Z+∖{1,3}, and showing that there are no graphs G with γgr t(G)∈{1,3}. We also present such a family, which has minimum possible order and size among all graphs with Grundy total domination number equal to k.
Fil: Brešar, Boštjan. University of Maribor; Eslovenia. Institute of Mathematics, Physics and Mechanics; Eslovenia
Fil: Kos, Tim. Institute of Mathematics, Physics and Mechanics; Eslovenia
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
GRUNDY TOTAL DOMINATION NUMBER
MODULAR DECOMPOSITION
SPLIT GRAPH
TREE
VERTEX COVER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117720
Ver los metadatos del registro completo
id |
CONICETDig_12d25e0f12b454f933e2bd523e6a0b99 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117720 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Total dominating sequences in trees, split graphs, and under modular decompositionBrešar, BoštjanKos, TimNasini, Graciela LeonorTorres, Pablo DanielGRUNDY TOTAL DOMINATION NUMBERMODULAR DECOMPOSITIONSPLIT GRAPHTREEVERTEX COVERhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A sequence of vertices in a graph G with no isolated vertices is called a total dominating sequence if every vertex in the sequence totally dominates at least one vertex that was not totally dominated by preceding vertices in the sequence, and, at the end all vertices of G are totally dominated (by definition a vertex totally dominates its neighbors). The maximum length of a total dominating sequence is called the Grundy total domination number, γgr t(G), of G, as introduced in Brešar et al. (2016). In this paper we continue the investigation of this concept, mainly from the algorithmic point of view. While it was known that the decision version of the problem is NP-complete in bipartite graphs, we show that this is also true if we restrict to split graphs. A linear time algorithm for determining the Grundy total domination number of an arbitrary forest T is presented, based on the formula γgr t(T)=2τ(T), where τ(T) is the vertex cover number of T. A similar efficient algorithm is presented for bipartite distance-hereditary graphs. Using the modular decomposition of a graph, we present a frame for obtaining polynomial algorithms for this problem in classes of graphs having relatively simple modular subgraphs. In particular, a linear algorithm for determining the Grundy total domination number of P4-tidy graphs is presented. In addition, we prove a realization result by exhibiting a family of graphs Gk such that γgr t(Gk)=k, for any k∈Z+∖{1,3}, and showing that there are no graphs G with γgr t(G)∈{1,3}. We also present such a family, which has minimum possible order and size among all graphs with Grundy total domination number equal to k.Fil: Brešar, Boštjan. University of Maribor; Eslovenia. Institute of Mathematics, Physics and Mechanics; EsloveniaFil: Kos, Tim. Institute of Mathematics, Physics and Mechanics; EsloveniaFil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaElsevier Science2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117720Brešar, Boštjan; Kos, Tim; Nasini, Graciela Leonor; Torres, Pablo Daniel; Total dominating sequences in trees, split graphs, and under modular decomposition; Elsevier Science; Discrete Optimization; 28; 5-2018; 16-301572-5286CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.disopt.2017.10.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572528617302293info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1608.06804info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:17Zoai:ri.conicet.gov.ar:11336/117720instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:17.393CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Total dominating sequences in trees, split graphs, and under modular decomposition |
title |
Total dominating sequences in trees, split graphs, and under modular decomposition |
spellingShingle |
Total dominating sequences in trees, split graphs, and under modular decomposition Brešar, Boštjan GRUNDY TOTAL DOMINATION NUMBER MODULAR DECOMPOSITION SPLIT GRAPH TREE VERTEX COVER |
title_short |
Total dominating sequences in trees, split graphs, and under modular decomposition |
title_full |
Total dominating sequences in trees, split graphs, and under modular decomposition |
title_fullStr |
Total dominating sequences in trees, split graphs, and under modular decomposition |
title_full_unstemmed |
Total dominating sequences in trees, split graphs, and under modular decomposition |
title_sort |
Total dominating sequences in trees, split graphs, and under modular decomposition |
dc.creator.none.fl_str_mv |
Brešar, Boštjan Kos, Tim Nasini, Graciela Leonor Torres, Pablo Daniel |
author |
Brešar, Boštjan |
author_facet |
Brešar, Boštjan Kos, Tim Nasini, Graciela Leonor Torres, Pablo Daniel |
author_role |
author |
author2 |
Kos, Tim Nasini, Graciela Leonor Torres, Pablo Daniel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
GRUNDY TOTAL DOMINATION NUMBER MODULAR DECOMPOSITION SPLIT GRAPH TREE VERTEX COVER |
topic |
GRUNDY TOTAL DOMINATION NUMBER MODULAR DECOMPOSITION SPLIT GRAPH TREE VERTEX COVER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A sequence of vertices in a graph G with no isolated vertices is called a total dominating sequence if every vertex in the sequence totally dominates at least one vertex that was not totally dominated by preceding vertices in the sequence, and, at the end all vertices of G are totally dominated (by definition a vertex totally dominates its neighbors). The maximum length of a total dominating sequence is called the Grundy total domination number, γgr t(G), of G, as introduced in Brešar et al. (2016). In this paper we continue the investigation of this concept, mainly from the algorithmic point of view. While it was known that the decision version of the problem is NP-complete in bipartite graphs, we show that this is also true if we restrict to split graphs. A linear time algorithm for determining the Grundy total domination number of an arbitrary forest T is presented, based on the formula γgr t(T)=2τ(T), where τ(T) is the vertex cover number of T. A similar efficient algorithm is presented for bipartite distance-hereditary graphs. Using the modular decomposition of a graph, we present a frame for obtaining polynomial algorithms for this problem in classes of graphs having relatively simple modular subgraphs. In particular, a linear algorithm for determining the Grundy total domination number of P4-tidy graphs is presented. In addition, we prove a realization result by exhibiting a family of graphs Gk such that γgr t(Gk)=k, for any k∈Z+∖{1,3}, and showing that there are no graphs G with γgr t(G)∈{1,3}. We also present such a family, which has minimum possible order and size among all graphs with Grundy total domination number equal to k. Fil: Brešar, Boštjan. University of Maribor; Eslovenia. Institute of Mathematics, Physics and Mechanics; Eslovenia Fil: Kos, Tim. Institute of Mathematics, Physics and Mechanics; Eslovenia Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
A sequence of vertices in a graph G with no isolated vertices is called a total dominating sequence if every vertex in the sequence totally dominates at least one vertex that was not totally dominated by preceding vertices in the sequence, and, at the end all vertices of G are totally dominated (by definition a vertex totally dominates its neighbors). The maximum length of a total dominating sequence is called the Grundy total domination number, γgr t(G), of G, as introduced in Brešar et al. (2016). In this paper we continue the investigation of this concept, mainly from the algorithmic point of view. While it was known that the decision version of the problem is NP-complete in bipartite graphs, we show that this is also true if we restrict to split graphs. A linear time algorithm for determining the Grundy total domination number of an arbitrary forest T is presented, based on the formula γgr t(T)=2τ(T), where τ(T) is the vertex cover number of T. A similar efficient algorithm is presented for bipartite distance-hereditary graphs. Using the modular decomposition of a graph, we present a frame for obtaining polynomial algorithms for this problem in classes of graphs having relatively simple modular subgraphs. In particular, a linear algorithm for determining the Grundy total domination number of P4-tidy graphs is presented. In addition, we prove a realization result by exhibiting a family of graphs Gk such that γgr t(Gk)=k, for any k∈Z+∖{1,3}, and showing that there are no graphs G with γgr t(G)∈{1,3}. We also present such a family, which has minimum possible order and size among all graphs with Grundy total domination number equal to k. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117720 Brešar, Boštjan; Kos, Tim; Nasini, Graciela Leonor; Torres, Pablo Daniel; Total dominating sequences in trees, split graphs, and under modular decomposition; Elsevier Science; Discrete Optimization; 28; 5-2018; 16-30 1572-5286 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117720 |
identifier_str_mv |
Brešar, Boštjan; Kos, Tim; Nasini, Graciela Leonor; Torres, Pablo Daniel; Total dominating sequences in trees, split graphs, and under modular decomposition; Elsevier Science; Discrete Optimization; 28; 5-2018; 16-30 1572-5286 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disopt.2017.10.002 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572528617302293 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1608.06804 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614087745470464 |
score |
13.070432 |