Segmentation of the human gait cycle using hidden Markov Models (HMM)

Autores
Molina, Diego Edwards; Miralles, Mónica Teresita; Florentin, Raúl
Año de publicación
2024
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Fil: Molina, Diego Edwards. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina
Fil: Molina, Diego Edwards. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; Argentina
Fil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Arquitectura, Diseño y Urbanismo. Centro de Investigación en Diseño Industrial de Productos Complejos; Argentina
Fil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; Argentina
Fil: Florentín, Raúl. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electrónica; Argentina
Fil: Florentín, Raúl. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; Argentina
Abstract: This paper provides a supervised Hidden Markov Model (HMM) for the segmentation of the human gait cycle. The model arises, in turn, from the combination of two HMM models, each with three hidden states, making use of the DepmixS4 and RcppHMM libraries of the free software R. The validation of the model was carried out with the cross-validation method in two different ways. The three accelerometer signals provided by the sensor located in the left ankle and in the right ankle, respectively, were processed in the 20 healthy young subjects (33.4 ± 7 years, height 172.6 ± 9.5 cm, muscle mass 73.2 ± 10.9 kg), the open base MAREA. The base has different tests in indoor and outdoor environment, allowing a variety of walking situations, even the combination of walking and running. In this way the model provides a new validation for the base. The results were expressed from the statistics derived from the confusion matrix: Accuracy, Sensitivity and Specificity. In the tests of walking for 3 min on the flat surface in close environment, the model reached: 99%, 84.1% and 93.2% respectively (sensor on left ankle).With the signals obtained from the right ankle, the valueswere 93%, 73% and 86.4%, respectively. In both cases, the acceleration signals were filtered with the Butterworth filter. The results are discussed with other authors who have used the same base with different algorithms.
Fuente
Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2023. IFMBE Proceedings, vol 114. Cham: Springer, 2024
Materia
CICLO DE LA MARCHA
MODELOS OCULTOS DE MARKOV
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/18415

id RIUCA_e51a7cb25c4319cf31397c7620d8fe7a
oai_identifier_str oai:ucacris:123456789/18415
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling Segmentation of the human gait cycle using hidden Markov Models (HMM)Molina, Diego EdwardsMiralles, Mónica TeresitaFlorentin, RaúlCICLO DE LA MARCHAMODELOS OCULTOS DE MARKOVFil: Molina, Diego Edwards. Universidad Tecnológica Nacional. Facultad Regional Haedo; ArgentinaFil: Molina, Diego Edwards. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; ArgentinaFil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Arquitectura, Diseño y Urbanismo. Centro de Investigación en Diseño Industrial de Productos Complejos; ArgentinaFil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; ArgentinaFil: Florentín, Raúl. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electrónica; ArgentinaFil: Florentín, Raúl. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; ArgentinaAbstract: This paper provides a supervised Hidden Markov Model (HMM) for the segmentation of the human gait cycle. The model arises, in turn, from the combination of two HMM models, each with three hidden states, making use of the DepmixS4 and RcppHMM libraries of the free software R. The validation of the model was carried out with the cross-validation method in two different ways. The three accelerometer signals provided by the sensor located in the left ankle and in the right ankle, respectively, were processed in the 20 healthy young subjects (33.4 ± 7 years, height 172.6 ± 9.5 cm, muscle mass 73.2 ± 10.9 kg), the open base MAREA. The base has different tests in indoor and outdoor environment, allowing a variety of walking situations, even the combination of walking and running. In this way the model provides a new validation for the base. The results were expressed from the statistics derived from the confusion matrix: Accuracy, Sensitivity and Specificity. In the tests of walking for 3 min on the flat surface in close environment, the model reached: 99%, 84.1% and 93.2% respectively (sensor on left ankle).With the signals obtained from the right ankle, the valueswere 93%, 73% and 86.4%, respectively. In both cases, the acceleration signals were filtered with the Butterworth filter. The results are discussed with other authors who have used the same base with different algorithms.Springer Nature Switzerland2024info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/18415978-3-031-61972-410.1007/978-3-031-61973-1_8Molina, D. E., Miralles, M. T., Florentin, R. Segmentation of the human gait cycle using hidden Markov Models (HMM) [et al.]. En: Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2023. IFMBE Proceedings, vol 114. Cham: Springer, 2024. doi: 10.1007/978-3-031-61973-1_8. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/18415Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2023. IFMBE Proceedings, vol 114. Cham: Springer, 2024reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:59:51Zoai:ucacris:123456789/18415instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:59:52.069Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv Segmentation of the human gait cycle using hidden Markov Models (HMM)
title Segmentation of the human gait cycle using hidden Markov Models (HMM)
spellingShingle Segmentation of the human gait cycle using hidden Markov Models (HMM)
Molina, Diego Edwards
CICLO DE LA MARCHA
MODELOS OCULTOS DE MARKOV
title_short Segmentation of the human gait cycle using hidden Markov Models (HMM)
title_full Segmentation of the human gait cycle using hidden Markov Models (HMM)
title_fullStr Segmentation of the human gait cycle using hidden Markov Models (HMM)
title_full_unstemmed Segmentation of the human gait cycle using hidden Markov Models (HMM)
title_sort Segmentation of the human gait cycle using hidden Markov Models (HMM)
dc.creator.none.fl_str_mv Molina, Diego Edwards
Miralles, Mónica Teresita
Florentin, Raúl
author Molina, Diego Edwards
author_facet Molina, Diego Edwards
Miralles, Mónica Teresita
Florentin, Raúl
author_role author
author2 Miralles, Mónica Teresita
Florentin, Raúl
author2_role author
author
dc.subject.none.fl_str_mv CICLO DE LA MARCHA
MODELOS OCULTOS DE MARKOV
topic CICLO DE LA MARCHA
MODELOS OCULTOS DE MARKOV
dc.description.none.fl_txt_mv Fil: Molina, Diego Edwards. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina
Fil: Molina, Diego Edwards. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; Argentina
Fil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Arquitectura, Diseño y Urbanismo. Centro de Investigación en Diseño Industrial de Productos Complejos; Argentina
Fil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; Argentina
Fil: Florentín, Raúl. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electrónica; Argentina
Fil: Florentín, Raúl. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería Para la Salud; Argentina
Abstract: This paper provides a supervised Hidden Markov Model (HMM) for the segmentation of the human gait cycle. The model arises, in turn, from the combination of two HMM models, each with three hidden states, making use of the DepmixS4 and RcppHMM libraries of the free software R. The validation of the model was carried out with the cross-validation method in two different ways. The three accelerometer signals provided by the sensor located in the left ankle and in the right ankle, respectively, were processed in the 20 healthy young subjects (33.4 ± 7 years, height 172.6 ± 9.5 cm, muscle mass 73.2 ± 10.9 kg), the open base MAREA. The base has different tests in indoor and outdoor environment, allowing a variety of walking situations, even the combination of walking and running. In this way the model provides a new validation for the base. The results were expressed from the statistics derived from the confusion matrix: Accuracy, Sensitivity and Specificity. In the tests of walking for 3 min on the flat surface in close environment, the model reached: 99%, 84.1% and 93.2% respectively (sensor on left ankle).With the signals obtained from the right ankle, the valueswere 93%, 73% and 86.4%, respectively. In both cases, the acceleration signals were filtered with the Butterworth filter. The results are discussed with other authors who have used the same base with different algorithms.
description Fil: Molina, Diego Edwards. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina
publishDate 2024
dc.date.none.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/18415
978-3-031-61972-4
10.1007/978-3-031-61973-1_8
Molina, D. E., Miralles, M. T., Florentin, R. Segmentation of the human gait cycle using hidden Markov Models (HMM) [et al.]. En: Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2023. IFMBE Proceedings, vol 114. Cham: Springer, 2024. doi: 10.1007/978-3-031-61973-1_8. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/18415
url https://repositorio.uca.edu.ar/handle/123456789/18415
identifier_str_mv 978-3-031-61972-4
10.1007/978-3-031-61973-1_8
Molina, D. E., Miralles, M. T., Florentin, R. Segmentation of the human gait cycle using hidden Markov Models (HMM) [et al.]. En: Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2023. IFMBE Proceedings, vol 114. Cham: Springer, 2024. doi: 10.1007/978-3-031-61973-1_8. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/18415
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Nature Switzerland
publisher.none.fl_str_mv Springer Nature Switzerland
dc.source.none.fl_str_mv Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J. (eds) Advances in Bioengineering and Clinical Engineering. SABI 2023. IFMBE Proceedings, vol 114. Cham: Springer, 2024
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638373948686336
score 13.13397