DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation
- Autores
- Franco, Bruno A.; Luciano, Ezequiel R.; Sarotti, Ariel M.; Zanardi, María M.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Franco, Bruno A. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; Argentina
Fil: Luciano, Ezequiel R. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; Argentina
Fil: Sarotti, Ariel M. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Sarotti, Ariel M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Rosario; Argentina
Fil: Zanardi, María M. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; Argentina
Abstract: DP4+ is one of the most popular methods for the structure elucidation of natural products using NMR calculations. While the method is simple and easy to implement, it requires a series of procedures that can be tedious, coupled with the fact that its computational demand can be high in certain cases. In this work, we made a substantial improvement to these limitations. First, we deeply explored the effect of molecular mechanics architecture on the DP4+ formalism (MM-DP4+). In addition, a Python applet (DP4+App) was developed to automate the entire process, requiring only the Gaussian NMR output files and a spreadsheet containing the experimental NMR data and labels. The script is designed to use the statistical parameters from the original 24 levels of theory (employing B3LYP/6-31G* geometries) and the new 36 levels explored in this work (over MMFF geometries). Furthermore, it enables the development of customizable methods using any desired level of theory, allowing for a free choice of test molecules. - Fuente
- Journal of Natural Products. 2023.
- Materia
-
QUIMICA COMPUTACIONAL
DP4 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/17239
Ver los metadatos del registro completo
id |
RIUCA_a94ce1d50072479ff98fd4bd41d6c917 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/17239 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and AutomationFranco, Bruno A.Luciano, Ezequiel R.Sarotti, Ariel M.Zanardi, María M.QUIMICA COMPUTACIONALDP4Fil: Franco, Bruno A. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; ArgentinaFil: Luciano, Ezequiel R. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; ArgentinaFil: Sarotti, Ariel M. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Sarotti, Ariel M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Rosario; ArgentinaFil: Zanardi, María M. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; ArgentinaAbstract: DP4+ is one of the most popular methods for the structure elucidation of natural products using NMR calculations. While the method is simple and easy to implement, it requires a series of procedures that can be tedious, coupled with the fact that its computational demand can be high in certain cases. In this work, we made a substantial improvement to these limitations. First, we deeply explored the effect of molecular mechanics architecture on the DP4+ formalism (MM-DP4+). In addition, a Python applet (DP4+App) was developed to automate the entire process, requiring only the Gaussian NMR output files and a spreadsheet containing the experimental NMR data and labels. The script is designed to use the statistical parameters from the original 24 levels of theory (employing B3LYP/6-31G* geometries) and the new 36 levels explored in this work (over MMFF geometries). Furthermore, it enables the development of customizable methods using any desired level of theory, allowing for a free choice of test molecules.ASC2023info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/172390163-386410.1021/acs.jnatprod.3c00566Franco, B. A. DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation [en línea]. Journal of Natural Products. 2023. doi: 10.1021/acs.jnatprod.3c00566. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17239Journal of Natural Products. 2023.reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:59:33Zoai:ucacris:123456789/17239instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:59:33.948Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation |
title |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation |
spellingShingle |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation Franco, Bruno A. QUIMICA COMPUTACIONAL DP4 |
title_short |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation |
title_full |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation |
title_fullStr |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation |
title_full_unstemmed |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation |
title_sort |
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation |
dc.creator.none.fl_str_mv |
Franco, Bruno A. Luciano, Ezequiel R. Sarotti, Ariel M. Zanardi, María M. |
author |
Franco, Bruno A. |
author_facet |
Franco, Bruno A. Luciano, Ezequiel R. Sarotti, Ariel M. Zanardi, María M. |
author_role |
author |
author2 |
Luciano, Ezequiel R. Sarotti, Ariel M. Zanardi, María M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
QUIMICA COMPUTACIONAL DP4 |
topic |
QUIMICA COMPUTACIONAL DP4 |
dc.description.none.fl_txt_mv |
Fil: Franco, Bruno A. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; Argentina Fil: Luciano, Ezequiel R. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; Argentina Fil: Sarotti, Ariel M. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Sarotti, Ariel M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Rosario; Argentina Fil: Zanardi, María M. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; Argentina Abstract: DP4+ is one of the most popular methods for the structure elucidation of natural products using NMR calculations. While the method is simple and easy to implement, it requires a series of procedures that can be tedious, coupled with the fact that its computational demand can be high in certain cases. In this work, we made a substantial improvement to these limitations. First, we deeply explored the effect of molecular mechanics architecture on the DP4+ formalism (MM-DP4+). In addition, a Python applet (DP4+App) was developed to automate the entire process, requiring only the Gaussian NMR output files and a spreadsheet containing the experimental NMR data and labels. The script is designed to use the statistical parameters from the original 24 levels of theory (employing B3LYP/6-31G* geometries) and the new 36 levels explored in this work (over MMFF geometries). Furthermore, it enables the development of customizable methods using any desired level of theory, allowing for a free choice of test molecules. |
description |
Fil: Franco, Bruno A. Pontificia Universidad Católica Argentina. Facultad de Química e Ingeniería del Rosario. Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada; Argentina |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/17239 0163-3864 10.1021/acs.jnatprod.3c00566 Franco, B. A. DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation [en línea]. Journal of Natural Products. 2023. doi: 10.1021/acs.jnatprod.3c00566. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17239 |
url |
https://repositorio.uca.edu.ar/handle/123456789/17239 |
identifier_str_mv |
0163-3864 10.1021/acs.jnatprod.3c00566 Franco, B. A. DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation [en línea]. Journal of Natural Products. 2023. doi: 10.1021/acs.jnatprod.3c00566. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17239 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ASC |
publisher.none.fl_str_mv |
ASC |
dc.source.none.fl_str_mv |
Journal of Natural Products. 2023. reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638370851192832 |
score |
13.13397 |