The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals

Autores
Florentin, R.; Medina, Juan Miguel; Miralles, Mónica Teresita
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Fil: Florentin, R. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Florentin, R. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Medina, Juan Miguel. Universidad de Buenos Aires, Facultad de Ingeniería; Argentina
Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Medina, Juan Miguel. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Abstract: Almost-periodic functions are a useful model of persistent signals. In real life, the occurrence of almost-periodic oscillations is much more common than exact periodic ones. Almostperiodic functions were extensively studied by H. Bohr, V. Stepanov, N. Wiener, A.S. Besicovitch [3], [17] among other renown scientists. Initially, this theory was concerned with the study of the almost-periodicity of the solutions of differential equations. As shown in [7], for example, if we consider the wave equation ux x = k2ut t , with the non-ideal boundary condition: u(t, 0) = 0, ux(t, l) + hu(t, l) = 0, h > 0, then we get almost-periodic solutions to the wave equation. A possible physic interpretation could be the following: u(x, t) describes the motion of a vibrating elastic string such that it is fixed at x = 0 and whose end at x = l has its tension ux(t, l) proportional to the elongation u(t, l). Apart from mathematical physics, almost-periodic waves or oscillations appear in other dynamical systems and Control Theory [13]. On the other hand, they are a subclass of functions to which the Generalized Harmonic Analysis tools, first developed by Wiener, can be applied to them [1]. As it is discussed in [2], these tools are also well adapted for interpreting spectral bio-electric data, where non-periodic and persistent rhythms appear and the usual finite-energy techniques (i.e. L2(R)) of harmonic analysis cannot be applied. Finally, there has been a substantial research in how some usual time-frequency representations, i.e. Wavelets and Gabor transforms, can be adapted to this scenery. Some positive answers about the representation of almost-periodic signals were given in e.g. [4], [11], [12], [14] and more recently in [5]. Gabor and Wavelet Transform not only give, in some sense, optimal representations of signals but also are useful signal analysis tools, at least in the finite-energy context. We note, however, that this fact it is not discussed, for the almost-periodic case, in none of these referenced works. Here, we shall discuss some of these facts for the Gabor (or Short Time Fourier Transform). In the finite-energy context, smoothness or regularity analysis is very well described in terms of decay of Gabor or Wavelet coefficients or as equivalences of norms. Smoothness analysis is of certain importance in the classification of signals. In contrast to the L2(R) setup, here we will prove some analogue results for the Gabor Transform of almost-periodic signals. There exist several definitions of almost-periodicity with increasing generality. Here will be concerned with the Besicovitch class of almost-periodic signals. In particular, these functions constitute a closed subspace of almost-periodic signals included in the more general (Hilbert) vector space of Bounded Quadratic Mean functions, i.e. Bounded Power signals. The paper is organized as follows: first the Besicovitch class of Almost Periodic signals is introduced. In Section II-A time frequency-analysis of almost periodic functions is discussed. Finally, the main results on smoothness analysis are given in Section III. A brief practical and preliminar example on biomedical time series is presented there.
Fuente
Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023
Materia
MECANICA DE FLUIDOS
DESVIACION DE ESFERICIDAD
FUNCIONES CASI PERIODICAS
ESPECTROMETRIA
OSCILACIONES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/17556

id RIUCA_66279610c4fdad756f50b20f0e8970d0
oai_identifier_str oai:ucacris:123456789/17556
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signalsFlorentin, R.Medina, Juan MiguelMiralles, Mónica TeresitaMECANICA DE FLUIDOSDESVIACION DE ESFERICIDADFUNCIONES CASI PERIODICASESPECTROMETRIAOSCILACIONESFil: Florentin, R. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Florentin, R. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; ArgentinaFil: Medina, Juan Miguel. Universidad de Buenos Aires, Facultad de Ingeniería; ArgentinaFil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Medina, Juan Miguel. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; ArgentinaFil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; ArgentinaFil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaAbstract: Almost-periodic functions are a useful model of persistent signals. In real life, the occurrence of almost-periodic oscillations is much more common than exact periodic ones. Almostperiodic functions were extensively studied by H. Bohr, V. Stepanov, N. Wiener, A.S. Besicovitch [3], [17] among other renown scientists. Initially, this theory was concerned with the study of the almost-periodicity of the solutions of differential equations. As shown in [7], for example, if we consider the wave equation ux x = k2ut t , with the non-ideal boundary condition: u(t, 0) = 0, ux(t, l) + hu(t, l) = 0, h > 0, then we get almost-periodic solutions to the wave equation. A possible physic interpretation could be the following: u(x, t) describes the motion of a vibrating elastic string such that it is fixed at x = 0 and whose end at x = l has its tension ux(t, l) proportional to the elongation u(t, l). Apart from mathematical physics, almost-periodic waves or oscillations appear in other dynamical systems and Control Theory [13]. On the other hand, they are a subclass of functions to which the Generalized Harmonic Analysis tools, first developed by Wiener, can be applied to them [1]. As it is discussed in [2], these tools are also well adapted for interpreting spectral bio-electric data, where non-periodic and persistent rhythms appear and the usual finite-energy techniques (i.e. L2(R)) of harmonic analysis cannot be applied. Finally, there has been a substantial research in how some usual time-frequency representations, i.e. Wavelets and Gabor transforms, can be adapted to this scenery. Some positive answers about the representation of almost-periodic signals were given in e.g. [4], [11], [12], [14] and more recently in [5]. Gabor and Wavelet Transform not only give, in some sense, optimal representations of signals but also are useful signal analysis tools, at least in the finite-energy context. We note, however, that this fact it is not discussed, for the almost-periodic case, in none of these referenced works. Here, we shall discuss some of these facts for the Gabor (or Short Time Fourier Transform). In the finite-energy context, smoothness or regularity analysis is very well described in terms of decay of Gabor or Wavelet coefficients or as equivalences of norms. Smoothness analysis is of certain importance in the classification of signals. In contrast to the L2(R) setup, here we will prove some analogue results for the Gabor Transform of almost-periodic signals. There exist several definitions of almost-periodicity with increasing generality. Here will be concerned with the Besicovitch class of almost-periodic signals. In particular, these functions constitute a closed subspace of almost-periodic signals included in the more general (Hilbert) vector space of Bounded Quadratic Mean functions, i.e. Bounded Power signals. The paper is organized as follows: first the Besicovitch class of Almost Periodic signals is introduced. In Section II-A time frequency-analysis of almost periodic functions is discussed. Finally, the main results on smoothness analysis are given in Section III. A brief practical and preliminar example on biomedical time series is presented there.2023info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/1755610.1109/RPIC59053.2023.10530753Florentin, R., Medina, J. M., Miralles, M. T. The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals En: Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17556Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica ArgentinaengAdquisición y procesamiento de señales biológicas asociadas a la biomecánica del adulto mayor y al riesgo de caídainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:59:37Zoai:ucacris:123456789/17556instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:59:37.718Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
title The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
spellingShingle The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
Florentin, R.
MECANICA DE FLUIDOS
DESVIACION DE ESFERICIDAD
FUNCIONES CASI PERIODICAS
ESPECTROMETRIA
OSCILACIONES
title_short The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
title_full The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
title_fullStr The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
title_full_unstemmed The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
title_sort The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
dc.creator.none.fl_str_mv Florentin, R.
Medina, Juan Miguel
Miralles, Mónica Teresita
author Florentin, R.
author_facet Florentin, R.
Medina, Juan Miguel
Miralles, Mónica Teresita
author_role author
author2 Medina, Juan Miguel
Miralles, Mónica Teresita
author2_role author
author
dc.subject.none.fl_str_mv MECANICA DE FLUIDOS
DESVIACION DE ESFERICIDAD
FUNCIONES CASI PERIODICAS
ESPECTROMETRIA
OSCILACIONES
topic MECANICA DE FLUIDOS
DESVIACION DE ESFERICIDAD
FUNCIONES CASI PERIODICAS
ESPECTROMETRIA
OSCILACIONES
dc.description.none.fl_txt_mv Fil: Florentin, R. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Florentin, R. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Medina, Juan Miguel. Universidad de Buenos Aires, Facultad de Ingeniería; Argentina
Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Medina, Juan Miguel. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Abstract: Almost-periodic functions are a useful model of persistent signals. In real life, the occurrence of almost-periodic oscillations is much more common than exact periodic ones. Almostperiodic functions were extensively studied by H. Bohr, V. Stepanov, N. Wiener, A.S. Besicovitch [3], [17] among other renown scientists. Initially, this theory was concerned with the study of the almost-periodicity of the solutions of differential equations. As shown in [7], for example, if we consider the wave equation ux x = k2ut t , with the non-ideal boundary condition: u(t, 0) = 0, ux(t, l) + hu(t, l) = 0, h > 0, then we get almost-periodic solutions to the wave equation. A possible physic interpretation could be the following: u(x, t) describes the motion of a vibrating elastic string such that it is fixed at x = 0 and whose end at x = l has its tension ux(t, l) proportional to the elongation u(t, l). Apart from mathematical physics, almost-periodic waves or oscillations appear in other dynamical systems and Control Theory [13]. On the other hand, they are a subclass of functions to which the Generalized Harmonic Analysis tools, first developed by Wiener, can be applied to them [1]. As it is discussed in [2], these tools are also well adapted for interpreting spectral bio-electric data, where non-periodic and persistent rhythms appear and the usual finite-energy techniques (i.e. L2(R)) of harmonic analysis cannot be applied. Finally, there has been a substantial research in how some usual time-frequency representations, i.e. Wavelets and Gabor transforms, can be adapted to this scenery. Some positive answers about the representation of almost-periodic signals were given in e.g. [4], [11], [12], [14] and more recently in [5]. Gabor and Wavelet Transform not only give, in some sense, optimal representations of signals but also are useful signal analysis tools, at least in the finite-energy context. We note, however, that this fact it is not discussed, for the almost-periodic case, in none of these referenced works. Here, we shall discuss some of these facts for the Gabor (or Short Time Fourier Transform). In the finite-energy context, smoothness or regularity analysis is very well described in terms of decay of Gabor or Wavelet coefficients or as equivalences of norms. Smoothness analysis is of certain importance in the classification of signals. In contrast to the L2(R) setup, here we will prove some analogue results for the Gabor Transform of almost-periodic signals. There exist several definitions of almost-periodicity with increasing generality. Here will be concerned with the Besicovitch class of almost-periodic signals. In particular, these functions constitute a closed subspace of almost-periodic signals included in the more general (Hilbert) vector space of Bounded Quadratic Mean functions, i.e. Bounded Power signals. The paper is organized as follows: first the Besicovitch class of Almost Periodic signals is introduced. In Section II-A time frequency-analysis of almost periodic functions is discussed. Finally, the main results on smoothness analysis are given in Section III. A brief practical and preliminar example on biomedical time series is presented there.
description Fil: Florentin, R. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/17556
10.1109/RPIC59053.2023.10530753
Florentin, R., Medina, J. M., Miralles, M. T. The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals En: Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17556
url https://repositorio.uca.edu.ar/handle/123456789/17556
identifier_str_mv 10.1109/RPIC59053.2023.10530753
Florentin, R., Medina, J. M., Miralles, M. T. The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals En: Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17556
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Adquisición y procesamiento de señales biológicas asociadas a la biomecánica del adulto mayor y al riesgo de caída
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638371564224512
score 13.22299