The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals
- Autores
- Florentin, R.; Medina, Juan Miguel; Miralles, Mónica Teresita
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Florentin, R. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Florentin, R. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Medina, Juan Miguel. Universidad de Buenos Aires, Facultad de Ingeniería; Argentina
Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Medina, Juan Miguel. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina
Fil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Abstract: Almost-periodic functions are a useful model of persistent signals. In real life, the occurrence of almost-periodic oscillations is much more common than exact periodic ones. Almostperiodic functions were extensively studied by H. Bohr, V. Stepanov, N. Wiener, A.S. Besicovitch [3], [17] among other renown scientists. Initially, this theory was concerned with the study of the almost-periodicity of the solutions of differential equations. As shown in [7], for example, if we consider the wave equation ux x = k2ut t , with the non-ideal boundary condition: u(t, 0) = 0, ux(t, l) + hu(t, l) = 0, h > 0, then we get almost-periodic solutions to the wave equation. A possible physic interpretation could be the following: u(x, t) describes the motion of a vibrating elastic string such that it is fixed at x = 0 and whose end at x = l has its tension ux(t, l) proportional to the elongation u(t, l). Apart from mathematical physics, almost-periodic waves or oscillations appear in other dynamical systems and Control Theory [13]. On the other hand, they are a subclass of functions to which the Generalized Harmonic Analysis tools, first developed by Wiener, can be applied to them [1]. As it is discussed in [2], these tools are also well adapted for interpreting spectral bio-electric data, where non-periodic and persistent rhythms appear and the usual finite-energy techniques (i.e. L2(R)) of harmonic analysis cannot be applied. Finally, there has been a substantial research in how some usual time-frequency representations, i.e. Wavelets and Gabor transforms, can be adapted to this scenery. Some positive answers about the representation of almost-periodic signals were given in e.g. [4], [11], [12], [14] and more recently in [5]. Gabor and Wavelet Transform not only give, in some sense, optimal representations of signals but also are useful signal analysis tools, at least in the finite-energy context. We note, however, that this fact it is not discussed, for the almost-periodic case, in none of these referenced works. Here, we shall discuss some of these facts for the Gabor (or Short Time Fourier Transform). In the finite-energy context, smoothness or regularity analysis is very well described in terms of decay of Gabor or Wavelet coefficients or as equivalences of norms. Smoothness analysis is of certain importance in the classification of signals. In contrast to the L2(R) setup, here we will prove some analogue results for the Gabor Transform of almost-periodic signals. There exist several definitions of almost-periodicity with increasing generality. Here will be concerned with the Besicovitch class of almost-periodic signals. In particular, these functions constitute a closed subspace of almost-periodic signals included in the more general (Hilbert) vector space of Bounded Quadratic Mean functions, i.e. Bounded Power signals. The paper is organized as follows: first the Besicovitch class of Almost Periodic signals is introduced. In Section II-A time frequency-analysis of almost periodic functions is discussed. Finally, the main results on smoothness analysis are given in Section III. A brief practical and preliminar example on biomedical time series is presented there. - Fuente
- Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023
- Materia
-
MECANICA DE FLUIDOS
DESVIACION DE ESFERICIDAD
FUNCIONES CASI PERIODICAS
ESPECTROMETRIA
OSCILACIONES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/17556
Ver los metadatos del registro completo
id |
RIUCA_66279610c4fdad756f50b20f0e8970d0 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/17556 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signalsFlorentin, R.Medina, Juan MiguelMiralles, Mónica TeresitaMECANICA DE FLUIDOSDESVIACION DE ESFERICIDADFUNCIONES CASI PERIODICASESPECTROMETRIAOSCILACIONESFil: Florentin, R. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Florentin, R. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; ArgentinaFil: Medina, Juan Miguel. Universidad de Buenos Aires, Facultad de Ingeniería; ArgentinaFil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Medina, Juan Miguel. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; ArgentinaFil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; ArgentinaFil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaAbstract: Almost-periodic functions are a useful model of persistent signals. In real life, the occurrence of almost-periodic oscillations is much more common than exact periodic ones. Almostperiodic functions were extensively studied by H. Bohr, V. Stepanov, N. Wiener, A.S. Besicovitch [3], [17] among other renown scientists. Initially, this theory was concerned with the study of the almost-periodicity of the solutions of differential equations. As shown in [7], for example, if we consider the wave equation ux x = k2ut t , with the non-ideal boundary condition: u(t, 0) = 0, ux(t, l) + hu(t, l) = 0, h > 0, then we get almost-periodic solutions to the wave equation. A possible physic interpretation could be the following: u(x, t) describes the motion of a vibrating elastic string such that it is fixed at x = 0 and whose end at x = l has its tension ux(t, l) proportional to the elongation u(t, l). Apart from mathematical physics, almost-periodic waves or oscillations appear in other dynamical systems and Control Theory [13]. On the other hand, they are a subclass of functions to which the Generalized Harmonic Analysis tools, first developed by Wiener, can be applied to them [1]. As it is discussed in [2], these tools are also well adapted for interpreting spectral bio-electric data, where non-periodic and persistent rhythms appear and the usual finite-energy techniques (i.e. L2(R)) of harmonic analysis cannot be applied. Finally, there has been a substantial research in how some usual time-frequency representations, i.e. Wavelets and Gabor transforms, can be adapted to this scenery. Some positive answers about the representation of almost-periodic signals were given in e.g. [4], [11], [12], [14] and more recently in [5]. Gabor and Wavelet Transform not only give, in some sense, optimal representations of signals but also are useful signal analysis tools, at least in the finite-energy context. We note, however, that this fact it is not discussed, for the almost-periodic case, in none of these referenced works. Here, we shall discuss some of these facts for the Gabor (or Short Time Fourier Transform). In the finite-energy context, smoothness or regularity analysis is very well described in terms of decay of Gabor or Wavelet coefficients or as equivalences of norms. Smoothness analysis is of certain importance in the classification of signals. In contrast to the L2(R) setup, here we will prove some analogue results for the Gabor Transform of almost-periodic signals. There exist several definitions of almost-periodicity with increasing generality. Here will be concerned with the Besicovitch class of almost-periodic signals. In particular, these functions constitute a closed subspace of almost-periodic signals included in the more general (Hilbert) vector space of Bounded Quadratic Mean functions, i.e. Bounded Power signals. The paper is organized as follows: first the Besicovitch class of Almost Periodic signals is introduced. In Section II-A time frequency-analysis of almost periodic functions is discussed. Finally, the main results on smoothness analysis are given in Section III. A brief practical and preliminar example on biomedical time series is presented there.2023info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/1755610.1109/RPIC59053.2023.10530753Florentin, R., Medina, J. M., Miralles, M. T. The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals En: Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17556Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica ArgentinaengAdquisición y procesamiento de señales biológicas asociadas a la biomecánica del adulto mayor y al riesgo de caídainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:59:37Zoai:ucacris:123456789/17556instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:59:37.718Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals |
title |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals |
spellingShingle |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals Florentin, R. MECANICA DE FLUIDOS DESVIACION DE ESFERICIDAD FUNCIONES CASI PERIODICAS ESPECTROMETRIA OSCILACIONES |
title_short |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals |
title_full |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals |
title_fullStr |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals |
title_full_unstemmed |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals |
title_sort |
The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals |
dc.creator.none.fl_str_mv |
Florentin, R. Medina, Juan Miguel Miralles, Mónica Teresita |
author |
Florentin, R. |
author_facet |
Florentin, R. Medina, Juan Miguel Miralles, Mónica Teresita |
author_role |
author |
author2 |
Medina, Juan Miguel Miralles, Mónica Teresita |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MECANICA DE FLUIDOS DESVIACION DE ESFERICIDAD FUNCIONES CASI PERIODICAS ESPECTROMETRIA OSCILACIONES |
topic |
MECANICA DE FLUIDOS DESVIACION DE ESFERICIDAD FUNCIONES CASI PERIODICAS ESPECTROMETRIA OSCILACIONES |
dc.description.none.fl_txt_mv |
Fil: Florentin, R. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Florentin, R. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina Fil: Medina, Juan Miguel. Universidad de Buenos Aires, Facultad de Ingeniería; Argentina Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Medina, Juan Miguel. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina Fil: Miralles, Mónica Teresita. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias. Laboratorio de Biomecánica e Ingeniería para la Salud; Argentina Fil: Miralles, Mónica Teresita. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Abstract: Almost-periodic functions are a useful model of persistent signals. In real life, the occurrence of almost-periodic oscillations is much more common than exact periodic ones. Almostperiodic functions were extensively studied by H. Bohr, V. Stepanov, N. Wiener, A.S. Besicovitch [3], [17] among other renown scientists. Initially, this theory was concerned with the study of the almost-periodicity of the solutions of differential equations. As shown in [7], for example, if we consider the wave equation ux x = k2ut t , with the non-ideal boundary condition: u(t, 0) = 0, ux(t, l) + hu(t, l) = 0, h > 0, then we get almost-periodic solutions to the wave equation. A possible physic interpretation could be the following: u(x, t) describes the motion of a vibrating elastic string such that it is fixed at x = 0 and whose end at x = l has its tension ux(t, l) proportional to the elongation u(t, l). Apart from mathematical physics, almost-periodic waves or oscillations appear in other dynamical systems and Control Theory [13]. On the other hand, they are a subclass of functions to which the Generalized Harmonic Analysis tools, first developed by Wiener, can be applied to them [1]. As it is discussed in [2], these tools are also well adapted for interpreting spectral bio-electric data, where non-periodic and persistent rhythms appear and the usual finite-energy techniques (i.e. L2(R)) of harmonic analysis cannot be applied. Finally, there has been a substantial research in how some usual time-frequency representations, i.e. Wavelets and Gabor transforms, can be adapted to this scenery. Some positive answers about the representation of almost-periodic signals were given in e.g. [4], [11], [12], [14] and more recently in [5]. Gabor and Wavelet Transform not only give, in some sense, optimal representations of signals but also are useful signal analysis tools, at least in the finite-energy context. We note, however, that this fact it is not discussed, for the almost-periodic case, in none of these referenced works. Here, we shall discuss some of these facts for the Gabor (or Short Time Fourier Transform). In the finite-energy context, smoothness or regularity analysis is very well described in terms of decay of Gabor or Wavelet coefficients or as equivalences of norms. Smoothness analysis is of certain importance in the classification of signals. In contrast to the L2(R) setup, here we will prove some analogue results for the Gabor Transform of almost-periodic signals. There exist several definitions of almost-periodicity with increasing generality. Here will be concerned with the Besicovitch class of almost-periodic signals. In particular, these functions constitute a closed subspace of almost-periodic signals included in the more general (Hilbert) vector space of Bounded Quadratic Mean functions, i.e. Bounded Power signals. The paper is organized as follows: first the Besicovitch class of Almost Periodic signals is introduced. In Section II-A time frequency-analysis of almost periodic functions is discussed. Finally, the main results on smoothness analysis are given in Section III. A brief practical and preliminar example on biomedical time series is presented there. |
description |
Fil: Florentin, R. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/17556 10.1109/RPIC59053.2023.10530753 Florentin, R., Medina, J. M., Miralles, M. T. The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals En: Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17556 |
url |
https://repositorio.uca.edu.ar/handle/123456789/17556 |
identifier_str_mv |
10.1109/RPIC59053.2023.10530753 Florentin, R., Medina, J. M., Miralles, M. T. The continuous Gabor transform and smoothness : analysis of Besicovitch almost periodic signals En: Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17556 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Adquisición y procesamiento de señales biológicas asociadas a la biomecánica del adulto mayor y al riesgo de caída |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Reunión de Trabajo en Procesamiento de la Información y Control : 1 al 3 de noviembre. Oberá : Universidad Nacional de Misiones. Facultad de Ingeniería, 2023 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638371564224512 |
score |
13.22299 |