A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery

Autores
Yuchechen, Adrian E.; Lakkis, Susan Gabriela; Caferri, Agustin; Canziani, Pablo O.; Muszkats, Juan Pablo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Yuchechen, Adrián E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina. Facultad de Ciencias Agrarias; Argentina
Fil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Canziani, Pablo O. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Muszkats, Juan Pablo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemática; Argentina
Fil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina
Abstract: An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus.
Fuente
Remote Sensing. 2020, 12.
Materia
NUBES CIRRUS
TEMPERATURA
GEODESIA
INSTRUMENTOS DE MEDICION
ALTIMETRIA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/11512

id RIUCA_4c350c344239de63c1f8342ad3e82187
oai_identifier_str oai:ucacris:123456789/11512
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imageryYuchechen, Adrian E.Lakkis, Susan GabrielaCaferri, AgustinCanziani, Pablo O.Muszkats, Juan PabloNUBES CIRRUSTEMPERATURAGEODESIAINSTRUMENTOS DE MEDICIONALTIMETRIAFil: Yuchechen, Adrián E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina. Facultad de Ciencias Agrarias; ArgentinaFil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Canziani, Pablo O. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Muszkats, Juan Pablo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemática; ArgentinaFil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; ArgentinaAbstract: An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus.Molecular Diversity Preservation International2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/115122072-4292Yuchechen, A. E., Lakkis, S. G., Caferri, A., Canziani, P. O., Muszkats, J. P. A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery [en línea]. Remote Sensing. 2020, 12. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/11512Remote Sensing. 2020, 12.reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:57:48Zoai:ucacris:123456789/11512instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:57:49.083Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
title A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
spellingShingle A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
Yuchechen, Adrian E.
NUBES CIRRUS
TEMPERATURA
GEODESIA
INSTRUMENTOS DE MEDICION
ALTIMETRIA
title_short A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
title_full A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
title_fullStr A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
title_full_unstemmed A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
title_sort A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
dc.creator.none.fl_str_mv Yuchechen, Adrian E.
Lakkis, Susan Gabriela
Caferri, Agustin
Canziani, Pablo O.
Muszkats, Juan Pablo
author Yuchechen, Adrian E.
author_facet Yuchechen, Adrian E.
Lakkis, Susan Gabriela
Caferri, Agustin
Canziani, Pablo O.
Muszkats, Juan Pablo
author_role author
author2 Lakkis, Susan Gabriela
Caferri, Agustin
Canziani, Pablo O.
Muszkats, Juan Pablo
author2_role author
author
author
author
dc.subject.none.fl_str_mv NUBES CIRRUS
TEMPERATURA
GEODESIA
INSTRUMENTOS DE MEDICION
ALTIMETRIA
topic NUBES CIRRUS
TEMPERATURA
GEODESIA
INSTRUMENTOS DE MEDICION
ALTIMETRIA
dc.description.none.fl_txt_mv Fil: Yuchechen, Adrián E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina. Facultad de Ciencias Agrarias; Argentina
Fil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Canziani, Pablo O. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Muszkats, Juan Pablo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemática; Argentina
Fil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina
Abstract: An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus.
description Fil: Yuchechen, Adrián E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/11512
2072-4292
Yuchechen, A. E., Lakkis, S. G., Caferri, A., Canziani, P. O., Muszkats, J. P. A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery [en línea]. Remote Sensing. 2020, 12. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/11512
url https://repositorio.uca.edu.ar/handle/123456789/11512
identifier_str_mv 2072-4292
Yuchechen, A. E., Lakkis, S. G., Caferri, A., Canziani, P. O., Muszkats, J. P. A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery [en línea]. Remote Sensing. 2020, 12. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/11512
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv Remote Sensing. 2020, 12.
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638355252576256
score 12.982451