A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery
- Autores
- Yuchechen, Adrian E.; Lakkis, Susan Gabriela; Caferri, Agustin; Canziani, Pablo O.; Muszkats, Juan Pablo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Yuchechen, Adrián E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina. Facultad de Ciencias Agrarias; Argentina
Fil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Canziani, Pablo O. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Muszkats, Juan Pablo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemática; Argentina
Fil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina
Abstract: An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus. - Fuente
- Remote Sensing. 2020, 12.
- Materia
-
NUBES CIRRUS
TEMPERATURA
GEODESIA
INSTRUMENTOS DE MEDICION
ALTIMETRIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/11512
Ver los metadatos del registro completo
| id |
RIUCA_4c350c344239de63c1f8342ad3e82187 |
|---|---|
| oai_identifier_str |
oai:ucacris:123456789/11512 |
| network_acronym_str |
RIUCA |
| repository_id_str |
2585 |
| network_name_str |
Repositorio Institucional (UCA) |
| spelling |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imageryYuchechen, Adrian E.Lakkis, Susan GabrielaCaferri, AgustinCanziani, Pablo O.Muszkats, Juan PabloNUBES CIRRUSTEMPERATURAGEODESIAINSTRUMENTOS DE MEDICIONALTIMETRIAFil: Yuchechen, Adrián E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina. Facultad de Ciencias Agrarias; ArgentinaFil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Canziani, Pablo O. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Muszkats, Juan Pablo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemática; ArgentinaFil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; ArgentinaAbstract: An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus.Molecular Diversity Preservation International2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/115122072-4292Yuchechen, A. E., Lakkis, S. G., Caferri, A., Canziani, P. O., Muszkats, J. P. A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery [en línea]. Remote Sensing. 2020, 12. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/11512Remote Sensing. 2020, 12.reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:57:48Zoai:ucacris:123456789/11512instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:57:49.083Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
| dc.title.none.fl_str_mv |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery |
| title |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery |
| spellingShingle |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery Yuchechen, Adrian E. NUBES CIRRUS TEMPERATURA GEODESIA INSTRUMENTOS DE MEDICION ALTIMETRIA |
| title_short |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery |
| title_full |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery |
| title_fullStr |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery |
| title_full_unstemmed |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery |
| title_sort |
A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery |
| dc.creator.none.fl_str_mv |
Yuchechen, Adrian E. Lakkis, Susan Gabriela Caferri, Agustin Canziani, Pablo O. Muszkats, Juan Pablo |
| author |
Yuchechen, Adrian E. |
| author_facet |
Yuchechen, Adrian E. Lakkis, Susan Gabriela Caferri, Agustin Canziani, Pablo O. Muszkats, Juan Pablo |
| author_role |
author |
| author2 |
Lakkis, Susan Gabriela Caferri, Agustin Canziani, Pablo O. Muszkats, Juan Pablo |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
NUBES CIRRUS TEMPERATURA GEODESIA INSTRUMENTOS DE MEDICION ALTIMETRIA |
| topic |
NUBES CIRRUS TEMPERATURA GEODESIA INSTRUMENTOS DE MEDICION ALTIMETRIA |
| dc.description.none.fl_txt_mv |
Fil: Yuchechen, Adrián E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina. Facultad de Ciencias Agrarias; Argentina Fil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Canziani, Pablo O. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Muszkats, Juan Pablo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemática; Argentina Fil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina Abstract: An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus. |
| description |
Fil: Yuchechen, Adrián E. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas.Unidad de Investigación y Desarrollo de las Ingenierías; Argentina |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/11512 2072-4292 Yuchechen, A. E., Lakkis, S. G., Caferri, A., Canziani, P. O., Muszkats, J. P. A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery [en línea]. Remote Sensing. 2020, 12. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/11512 |
| url |
https://repositorio.uca.edu.ar/handle/123456789/11512 |
| identifier_str_mv |
2072-4292 Yuchechen, A. E., Lakkis, S. G., Caferri, A., Canziani, P. O., Muszkats, J. P. A cluster approach to cloud cover classification over south america and adjacent oceans using a k-means/k-means++ unsupervised algorithm on goes ir imagery [en línea]. Remote Sensing. 2020, 12. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/11512 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| dc.source.none.fl_str_mv |
Remote Sensing. 2020, 12. reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
| reponame_str |
Repositorio Institucional (UCA) |
| collection |
Repositorio Institucional (UCA) |
| instname_str |
Pontificia Universidad Católica Argentina |
| repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
| repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
| _version_ |
1836638355252576256 |
| score |
12.982451 |