A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery
- Autores
- Yuchechen, Adrian Enrique; Lakkis, Susan Gabriela; Caferri, Agustín; Canziani, Pablo Osvaldo; Muszkats, Juan Pablo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus.
Fil: Yuchechen, Adrian Enrique. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Caferri, Agustín. No especifíca;
Fil: Canziani, Pablo Osvaldo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BRIGHTNESS TEMPERATURE
CLOUD COVER
CLOUD REGIMES
CLUSTERING
GOES IR IMAGERY
KMEANS
KMEANS++
SOUTH AMERICA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151331
Ver los metadatos del registro completo
| id |
CONICETDig_f50e74a58cbcda6c329ffd6711d68a97 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151331 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imageryYuchechen, Adrian EnriqueLakkis, Susan GabrielaCaferri, AgustínCanziani, Pablo OsvaldoMuszkats, Juan PabloBRIGHTNESS TEMPERATURECLOUD COVERCLOUD REGIMESCLUSTERINGGOES IR IMAGERYKMEANSKMEANS++SOUTH AMERICAhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus.Fil: Yuchechen, Adrian Enrique. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Caferri, Agustín. No especifíca;Fil: Canziani, Pablo Osvaldo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMolecular Diversity Preservation International2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151331Yuchechen, Adrian Enrique; Lakkis, Susan Gabriela; Caferri, Agustín; Canziani, Pablo Osvaldo; Muszkats, Juan Pablo; A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery; Molecular Diversity Preservation International; Remote Sensing; 12; 18; 9-2020; 1-302072-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/12/18/2991info:eu-repo/semantics/altIdentifier/doi/10.3390/rs12182991info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:21:28Zoai:ri.conicet.gov.ar:11336/151331instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:21:28.827CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery |
| title |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery |
| spellingShingle |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery Yuchechen, Adrian Enrique BRIGHTNESS TEMPERATURE CLOUD COVER CLOUD REGIMES CLUSTERING GOES IR IMAGERY KMEANS KMEANS++ SOUTH AMERICA |
| title_short |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery |
| title_full |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery |
| title_fullStr |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery |
| title_full_unstemmed |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery |
| title_sort |
A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery |
| dc.creator.none.fl_str_mv |
Yuchechen, Adrian Enrique Lakkis, Susan Gabriela Caferri, Agustín Canziani, Pablo Osvaldo Muszkats, Juan Pablo |
| author |
Yuchechen, Adrian Enrique |
| author_facet |
Yuchechen, Adrian Enrique Lakkis, Susan Gabriela Caferri, Agustín Canziani, Pablo Osvaldo Muszkats, Juan Pablo |
| author_role |
author |
| author2 |
Lakkis, Susan Gabriela Caferri, Agustín Canziani, Pablo Osvaldo Muszkats, Juan Pablo |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
BRIGHTNESS TEMPERATURE CLOUD COVER CLOUD REGIMES CLUSTERING GOES IR IMAGERY KMEANS KMEANS++ SOUTH AMERICA |
| topic |
BRIGHTNESS TEMPERATURE CLOUD COVER CLOUD REGIMES CLUSTERING GOES IR IMAGERY KMEANS KMEANS++ SOUTH AMERICA |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus. Fil: Yuchechen, Adrian Enrique. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Caferri, Agustín. No especifíca; Fil: Canziani, Pablo Osvaldo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Muszkats, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
An unsupervised k-means/k-means++ clustering algorithm was implemented on daily images of standardized anomalies of brightness temperature (Tb) derived from the Geostationary Operational Environmental Satellite (GOES)-13 infrared data for the period 1 December 2010 to 30 November 2016. The goal was to decompose each individual Tb image into four clusters that captures the characteristics of different cloud regimes. The extracted clusters were ordered by their mean value in an ascending fashion so that the lower the cluster order, the higher the clouds they represent. A linear regression between temperature and height with temperature used as the predictor was conducted to estimate cloud top heights (CTHs) from the Tb values. The analysis of the results was performed in two different ways: sample dates and seasonal features. Cluster 1 is the less dominant one, representing clouds with the highest tops and variabilities. Cluster 4 is the most dominant one and represents a cloud regime that spans the lowest 2 km of the troposphere. Clusters 2 and 3 are entangled in the sense that both have their CTHs spanning the middle troposphere. Correlations between the monthly time series of the number of pixels in each cluster and of the entropy with several circulation indices are also introduced. Additionally, a fractal-related analysis was carried out on cluster 1 in order to resolve cirrus and cumulonimbus. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151331 Yuchechen, Adrian Enrique; Lakkis, Susan Gabriela; Caferri, Agustín; Canziani, Pablo Osvaldo; Muszkats, Juan Pablo; A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery; Molecular Diversity Preservation International; Remote Sensing; 12; 18; 9-2020; 1-30 2072-4292 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/151331 |
| identifier_str_mv |
Yuchechen, Adrian Enrique; Lakkis, Susan Gabriela; Caferri, Agustín; Canziani, Pablo Osvaldo; Muszkats, Juan Pablo; A cluster approach to cloud cover classification over South America and adjacent oceans using a k-means/k-means++ unsupervised algorithm on GOES IR imagery; Molecular Diversity Preservation International; Remote Sensing; 12; 18; 9-2020; 1-30 2072-4292 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/12/18/2991 info:eu-repo/semantics/altIdentifier/doi/10.3390/rs12182991 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781718001876992 |
| score |
12.982451 |