Tools for data analysis

Autores
Pérez Lloret, Santiago; Enet, Alejandro; Gonzalez Aleman, Gabriela
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Pérez Lloret, Santiago. Pontificia Universidad Católica Argentina. Observatorio de Salud Publica; Argentina
Fil: Pérez Lloret, Santiago. Consejo de Investigaciones Científicas y Técnicas; Argentina.
Fil: Pérez Lloret, Santiago. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Fisiología; Argentina
Fil: Enet, Alejandro. Pontificia Universidad Católica Argentina. Observatorio de Salud Publica; Argentina
Fil: Gonzalez Aleman, Gabriela. Pontificia Universidad Católica Argentina. Facultad de Psicología y Psicopedagogía,; Argentina
What are statistics Good for in human research studies? Studies conducted on human beings may have different objectives and designs, but they all share some common principles. 1 We outline these principles as a cycle, shown in Figure 1. The first step is to obtain a sample from a population. A population is a group of human beings sharing one or more characteristics. In medical research, researchers usually define populations following a disease or a condition. Obtaining the sample is called “sampling”. 2 Researchers will then discuss the study with the potential participants. They will be part of the study sample if they accept to participate and fulfill all inclusion and exclusion criteria. Investigators will perform a series of procedures and assessments and may apply an intervention to the sample of participants. For example, a treatment may be used, and its effects on Parkinson’s Disease motor symptoms may be recorded. Notably, study results only represent the effects of the intervention on the sample of participants. However, researchers are generally interested in “extrapolating” these results to the target population. The “statistical inference” procedure allows for performing such extrapolations. 3 Statistics is the science of collecting, analyzing, and describing data to conclude a particular phenomenon based on a relatively limited sample material. 3 It employs mathematical and probabilistic tools to develop methods and models for data analysis...
Fuente
Movement Disorders Clinical Practice. 2024
Materia
ESTADISTICAS
ANALISIS DE DATOS
Nivel de accesibilidad
acceso embargado
Condiciones de uso
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/19079

id RIUCA_04ce9f08913a3992c4d37d4a3c897672
oai_identifier_str oai:ucacris:123456789/19079
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling Tools for data analysisPérez Lloret, SantiagoEnet, AlejandroGonzalez Aleman, GabrielaESTADISTICASANALISIS DE DATOSFil: Pérez Lloret, Santiago. Pontificia Universidad Católica Argentina. Observatorio de Salud Publica; ArgentinaFil: Pérez Lloret, Santiago. Consejo de Investigaciones Científicas y Técnicas; Argentina.Fil: Pérez Lloret, Santiago. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Fisiología; ArgentinaFil: Enet, Alejandro. Pontificia Universidad Católica Argentina. Observatorio de Salud Publica; ArgentinaFil: Gonzalez Aleman, Gabriela. Pontificia Universidad Católica Argentina. Facultad de Psicología y Psicopedagogía,; ArgentinaWhat are statistics Good for in human research studies? Studies conducted on human beings may have different objectives and designs, but they all share some common principles. 1 We outline these principles as a cycle, shown in Figure 1. The first step is to obtain a sample from a population. A population is a group of human beings sharing one or more characteristics. In medical research, researchers usually define populations following a disease or a condition. Obtaining the sample is called “sampling”. 2 Researchers will then discuss the study with the potential participants. They will be part of the study sample if they accept to participate and fulfill all inclusion and exclusion criteria. Investigators will perform a series of procedures and assessments and may apply an intervention to the sample of participants. For example, a treatment may be used, and its effects on Parkinson’s Disease motor symptoms may be recorded. Notably, study results only represent the effects of the intervention on the sample of participants. However, researchers are generally interested in “extrapolating” these results to the target population. The “statistical inference” procedure allows for performing such extrapolations. 3 Statistics is the science of collecting, analyzing, and describing data to conclude a particular phenomenon based on a relatively limited sample material. 3 It employs mathematical and probabilistic tools to develop methods and models for data analysis...Wileyinfo:eu-repo/date/embargoEnd/2025-06-112024info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/190792330-1619 (online)10.1002/mdc3.1409238863258Movement Disorders Clinical Practice. 2024reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/embargoedAccess2025-07-03T11:00:03Zoai:ucacris:123456789/19079instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 11:00:03.868Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv Tools for data analysis
title Tools for data analysis
spellingShingle Tools for data analysis
Pérez Lloret, Santiago
ESTADISTICAS
ANALISIS DE DATOS
title_short Tools for data analysis
title_full Tools for data analysis
title_fullStr Tools for data analysis
title_full_unstemmed Tools for data analysis
title_sort Tools for data analysis
dc.creator.none.fl_str_mv Pérez Lloret, Santiago
Enet, Alejandro
Gonzalez Aleman, Gabriela
author Pérez Lloret, Santiago
author_facet Pérez Lloret, Santiago
Enet, Alejandro
Gonzalez Aleman, Gabriela
author_role author
author2 Enet, Alejandro
Gonzalez Aleman, Gabriela
author2_role author
author
dc.subject.none.fl_str_mv ESTADISTICAS
ANALISIS DE DATOS
topic ESTADISTICAS
ANALISIS DE DATOS
dc.description.none.fl_txt_mv Fil: Pérez Lloret, Santiago. Pontificia Universidad Católica Argentina. Observatorio de Salud Publica; Argentina
Fil: Pérez Lloret, Santiago. Consejo de Investigaciones Científicas y Técnicas; Argentina.
Fil: Pérez Lloret, Santiago. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Fisiología; Argentina
Fil: Enet, Alejandro. Pontificia Universidad Católica Argentina. Observatorio de Salud Publica; Argentina
Fil: Gonzalez Aleman, Gabriela. Pontificia Universidad Católica Argentina. Facultad de Psicología y Psicopedagogía,; Argentina
What are statistics Good for in human research studies? Studies conducted on human beings may have different objectives and designs, but they all share some common principles. 1 We outline these principles as a cycle, shown in Figure 1. The first step is to obtain a sample from a population. A population is a group of human beings sharing one or more characteristics. In medical research, researchers usually define populations following a disease or a condition. Obtaining the sample is called “sampling”. 2 Researchers will then discuss the study with the potential participants. They will be part of the study sample if they accept to participate and fulfill all inclusion and exclusion criteria. Investigators will perform a series of procedures and assessments and may apply an intervention to the sample of participants. For example, a treatment may be used, and its effects on Parkinson’s Disease motor symptoms may be recorded. Notably, study results only represent the effects of the intervention on the sample of participants. However, researchers are generally interested in “extrapolating” these results to the target population. The “statistical inference” procedure allows for performing such extrapolations. 3 Statistics is the science of collecting, analyzing, and describing data to conclude a particular phenomenon based on a relatively limited sample material. 3 It employs mathematical and probabilistic tools to develop methods and models for data analysis...
description Fil: Pérez Lloret, Santiago. Pontificia Universidad Católica Argentina. Observatorio de Salud Publica; Argentina
publishDate 2024
dc.date.none.fl_str_mv 2024
info:eu-repo/date/embargoEnd/2025-06-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/19079
2330-1619 (online)
10.1002/mdc3.14092
38863258
url https://repositorio.uca.edu.ar/handle/123456789/19079
identifier_str_mv 2330-1619 (online)
10.1002/mdc3.14092
38863258
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv Movement Disorders Clinical Practice. 2024
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638375595999232
score 13.22299