Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas
- Autores
- Ferrante, Micaela
- Año de publicación
- 2025
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- González, Jimena Soledad
Álvarez, Vera Alejandra - Descripción
- Los hidrogeles son materiales compuestos principalmente por una red polimérica y agua. Son reconocidos por su capacidad para absorber grandes cantidades de agua y por su aplicabilidad en diversos ámbitos. En el área biomédica, especialmente como apósitos para heridas, se utilizan debido a que permiten mantener niveles adecuados de humedad y temperatura, similares al ambiente corporal, favoreciendo el proceso de cicatrización, reduciendo tiempos y disminuyendo el riesgo de infecciones (Capítulo 1). Un tipo particular de hidrogel son los formulados mediante complejos polielectrolitos (PECs), donde una solución de polianión interactúa con una solución de policatión a través de sus grupos funcionales cargados. Cuando los hidrogeles se compactan, se los denomina complejos polielectrolitos compactos (CoPECs). La incorporación de sales como NaCl genera que los iones interactúen con las cadenas poliméricas, interfiriendo en la formación de la red y originando materiales saloplásticos con propiedades diferenciadas. En este trabajo se desarrollaron y caracterizaron hidrogeles CoPECs utilizando polímeros naturales. En los primeros capítulos se trabajó con los polisacáridos quitosano y pectina. Para la formulación se variaron parámetros como el pH, el contenido de NaCl y la concentración polimérica (los materiales y métodos se describen en el Capítulo 2). Se obtuvieron CoPECs de quitosano y pectina de forma satisfactoria e incorporaron NaCl en algunos casos para evaluar su efecto sobre las propiedades finales de los hidrogeles. Además, se añadió un analgésico modelo, la lidocaína, y se realizaron estudios específicos para evaluar su aplicación potencial como apósitos para heridas. Los resultados permitieron determinar que podrían utilizarse en quemaduras de primer o segundo grado (Capítulo 3). También se incorporaron refuerzos con el objetivo de mejorar las propiedades mecánicas y antimicrobianas de los hidrogeles. Los CoPECs de quitosano y pectina con nanohilos de celulosa (CNWs) demostraron resultados prometedores: los nanohilos se incorporaron de forma efectiva, mantuvieron el efecto antibacteriano, incrementaron la porosidad y los valores de tasa de transmisión de vapor de agua, y mejoraron las propiedades mecánicas superficiales (Capítulo 4). Por otro lado, se desarrollaron CoPECs de gelatina y condroitín sulfato con o sin NaCl. Los materiales obtenidos fueron compactos y frágiles, lo que dificultaba su moldeado y limitaba su uso como apósitos. Mediante un cambio en el proceso de obtención, empleando secado por aspersión en lugar de compactación por centrífuga, se lograron obtener microgeles de gelatina y condroitín sulfato. A estos microgeles se les incorporaron nanopartículas de plata (AgNPs), las cuales otorgaron propiedades antibacterianas. Además, se caracterizaron y analizaron otras propiedades de estos geles con miras a su uso en heridas agudas. En el ensayo de hemólisis, relacionado con su potencial aplicación, se observó que los microgeles con AgNPs presentaron un porcentaje de hemólisis mayor que los microgeles sin nanopartículas (Capítulo 5). En conclusión, este trabajo aborda la formulación, caracterización y estudio de biohidrogeles compuestos con aplicación potencial en apósitos para distintos tipos de heridas.
Fil: Ferrante, Micaela. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina - Materia
-
Hidrogeles
Aplicaciones biomédicas
Apósitos para heridas
Complejos polielectrolitos (PECs)
Solución de polianión
CoPECs de quitosano
Pectina con nanohilos de celulosa (CNWs)
Microgeles con AgNPs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de Mar del Plata. Facultad de Ingeniería
- OAI Identificador
- oai:rinfi.fi.mdp.edu.ar:123456789/1020
Ver los metadatos del registro completo
id |
RINFIUNMDP_987b659ed8e0139d09495912f1f998e7 |
---|---|
oai_identifier_str |
oai:rinfi.fi.mdp.edu.ar:123456789/1020 |
network_acronym_str |
RINFIUNMDP |
repository_id_str |
|
network_name_str |
Repositorio Institucional Facultad de Ingeniería - UNMDP |
spelling |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridasFerrante, MicaelaHidrogelesAplicaciones biomédicasApósitos para heridasComplejos polielectrolitos (PECs)Solución de polianiónCoPECs de quitosanoPectina con nanohilos de celulosa (CNWs)Microgeles con AgNPsLos hidrogeles son materiales compuestos principalmente por una red polimérica y agua. Son reconocidos por su capacidad para absorber grandes cantidades de agua y por su aplicabilidad en diversos ámbitos. En el área biomédica, especialmente como apósitos para heridas, se utilizan debido a que permiten mantener niveles adecuados de humedad y temperatura, similares al ambiente corporal, favoreciendo el proceso de cicatrización, reduciendo tiempos y disminuyendo el riesgo de infecciones (Capítulo 1). Un tipo particular de hidrogel son los formulados mediante complejos polielectrolitos (PECs), donde una solución de polianión interactúa con una solución de policatión a través de sus grupos funcionales cargados. Cuando los hidrogeles se compactan, se los denomina complejos polielectrolitos compactos (CoPECs). La incorporación de sales como NaCl genera que los iones interactúen con las cadenas poliméricas, interfiriendo en la formación de la red y originando materiales saloplásticos con propiedades diferenciadas. En este trabajo se desarrollaron y caracterizaron hidrogeles CoPECs utilizando polímeros naturales. En los primeros capítulos se trabajó con los polisacáridos quitosano y pectina. Para la formulación se variaron parámetros como el pH, el contenido de NaCl y la concentración polimérica (los materiales y métodos se describen en el Capítulo 2). Se obtuvieron CoPECs de quitosano y pectina de forma satisfactoria e incorporaron NaCl en algunos casos para evaluar su efecto sobre las propiedades finales de los hidrogeles. Además, se añadió un analgésico modelo, la lidocaína, y se realizaron estudios específicos para evaluar su aplicación potencial como apósitos para heridas. Los resultados permitieron determinar que podrían utilizarse en quemaduras de primer o segundo grado (Capítulo 3). También se incorporaron refuerzos con el objetivo de mejorar las propiedades mecánicas y antimicrobianas de los hidrogeles. Los CoPECs de quitosano y pectina con nanohilos de celulosa (CNWs) demostraron resultados prometedores: los nanohilos se incorporaron de forma efectiva, mantuvieron el efecto antibacteriano, incrementaron la porosidad y los valores de tasa de transmisión de vapor de agua, y mejoraron las propiedades mecánicas superficiales (Capítulo 4). Por otro lado, se desarrollaron CoPECs de gelatina y condroitín sulfato con o sin NaCl. Los materiales obtenidos fueron compactos y frágiles, lo que dificultaba su moldeado y limitaba su uso como apósitos. Mediante un cambio en el proceso de obtención, empleando secado por aspersión en lugar de compactación por centrífuga, se lograron obtener microgeles de gelatina y condroitín sulfato. A estos microgeles se les incorporaron nanopartículas de plata (AgNPs), las cuales otorgaron propiedades antibacterianas. Además, se caracterizaron y analizaron otras propiedades de estos geles con miras a su uso en heridas agudas. En el ensayo de hemólisis, relacionado con su potencial aplicación, se observó que los microgeles con AgNPs presentaron un porcentaje de hemólisis mayor que los microgeles sin nanopartículas (Capítulo 5). En conclusión, este trabajo aborda la formulación, caracterización y estudio de biohidrogeles compuestos con aplicación potencial en apósitos para distintos tipos de heridas.Fil: Ferrante, Micaela. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaUniversidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaGonzález, Jimena SoledadÁlvarez, Vera Alejandra2025-03-17Thesisinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://rinfi.fi.mdp.edu.ar/handle/123456789/1020spainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/reponame:Repositorio Institucional Facultad de Ingeniería - UNMDPinstname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería2025-09-18T11:37:41Zoai:rinfi.fi.mdp.edu.ar:123456789/1020instacron:FI-UNMDPInstitucionalhttps://rinfi.fi.mdp.edu.ar/Universidad públicahttps://www.fi.mdp.edu.ar/https://rinfi.fi.mdp.edu.ar/oai/snrdjosemrvs@fi.mdp.edu.arArgentinaopendoar:2025-09-18 11:37:42.054Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingenieríafalse |
dc.title.none.fl_str_mv |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas |
title |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas |
spellingShingle |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas Ferrante, Micaela Hidrogeles Aplicaciones biomédicas Apósitos para heridas Complejos polielectrolitos (PECs) Solución de polianión CoPECs de quitosano Pectina con nanohilos de celulosa (CNWs) Microgeles con AgNPs |
title_short |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas |
title_full |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas |
title_fullStr |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas |
title_full_unstemmed |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas |
title_sort |
Biohidrogeles basados en complejos polielectrolitos como apósitos para heridas |
dc.creator.none.fl_str_mv |
Ferrante, Micaela |
author |
Ferrante, Micaela |
author_facet |
Ferrante, Micaela |
author_role |
author |
dc.contributor.none.fl_str_mv |
González, Jimena Soledad Álvarez, Vera Alejandra |
dc.subject.none.fl_str_mv |
Hidrogeles Aplicaciones biomédicas Apósitos para heridas Complejos polielectrolitos (PECs) Solución de polianión CoPECs de quitosano Pectina con nanohilos de celulosa (CNWs) Microgeles con AgNPs |
topic |
Hidrogeles Aplicaciones biomédicas Apósitos para heridas Complejos polielectrolitos (PECs) Solución de polianión CoPECs de quitosano Pectina con nanohilos de celulosa (CNWs) Microgeles con AgNPs |
dc.description.none.fl_txt_mv |
Los hidrogeles son materiales compuestos principalmente por una red polimérica y agua. Son reconocidos por su capacidad para absorber grandes cantidades de agua y por su aplicabilidad en diversos ámbitos. En el área biomédica, especialmente como apósitos para heridas, se utilizan debido a que permiten mantener niveles adecuados de humedad y temperatura, similares al ambiente corporal, favoreciendo el proceso de cicatrización, reduciendo tiempos y disminuyendo el riesgo de infecciones (Capítulo 1). Un tipo particular de hidrogel son los formulados mediante complejos polielectrolitos (PECs), donde una solución de polianión interactúa con una solución de policatión a través de sus grupos funcionales cargados. Cuando los hidrogeles se compactan, se los denomina complejos polielectrolitos compactos (CoPECs). La incorporación de sales como NaCl genera que los iones interactúen con las cadenas poliméricas, interfiriendo en la formación de la red y originando materiales saloplásticos con propiedades diferenciadas. En este trabajo se desarrollaron y caracterizaron hidrogeles CoPECs utilizando polímeros naturales. En los primeros capítulos se trabajó con los polisacáridos quitosano y pectina. Para la formulación se variaron parámetros como el pH, el contenido de NaCl y la concentración polimérica (los materiales y métodos se describen en el Capítulo 2). Se obtuvieron CoPECs de quitosano y pectina de forma satisfactoria e incorporaron NaCl en algunos casos para evaluar su efecto sobre las propiedades finales de los hidrogeles. Además, se añadió un analgésico modelo, la lidocaína, y se realizaron estudios específicos para evaluar su aplicación potencial como apósitos para heridas. Los resultados permitieron determinar que podrían utilizarse en quemaduras de primer o segundo grado (Capítulo 3). También se incorporaron refuerzos con el objetivo de mejorar las propiedades mecánicas y antimicrobianas de los hidrogeles. Los CoPECs de quitosano y pectina con nanohilos de celulosa (CNWs) demostraron resultados prometedores: los nanohilos se incorporaron de forma efectiva, mantuvieron el efecto antibacteriano, incrementaron la porosidad y los valores de tasa de transmisión de vapor de agua, y mejoraron las propiedades mecánicas superficiales (Capítulo 4). Por otro lado, se desarrollaron CoPECs de gelatina y condroitín sulfato con o sin NaCl. Los materiales obtenidos fueron compactos y frágiles, lo que dificultaba su moldeado y limitaba su uso como apósitos. Mediante un cambio en el proceso de obtención, empleando secado por aspersión en lugar de compactación por centrífuga, se lograron obtener microgeles de gelatina y condroitín sulfato. A estos microgeles se les incorporaron nanopartículas de plata (AgNPs), las cuales otorgaron propiedades antibacterianas. Además, se caracterizaron y analizaron otras propiedades de estos geles con miras a su uso en heridas agudas. En el ensayo de hemólisis, relacionado con su potencial aplicación, se observó que los microgeles con AgNPs presentaron un porcentaje de hemólisis mayor que los microgeles sin nanopartículas (Capítulo 5). En conclusión, este trabajo aborda la formulación, caracterización y estudio de biohidrogeles compuestos con aplicación potencial en apósitos para distintos tipos de heridas. Fil: Ferrante, Micaela. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina |
description |
Los hidrogeles son materiales compuestos principalmente por una red polimérica y agua. Son reconocidos por su capacidad para absorber grandes cantidades de agua y por su aplicabilidad en diversos ámbitos. En el área biomédica, especialmente como apósitos para heridas, se utilizan debido a que permiten mantener niveles adecuados de humedad y temperatura, similares al ambiente corporal, favoreciendo el proceso de cicatrización, reduciendo tiempos y disminuyendo el riesgo de infecciones (Capítulo 1). Un tipo particular de hidrogel son los formulados mediante complejos polielectrolitos (PECs), donde una solución de polianión interactúa con una solución de policatión a través de sus grupos funcionales cargados. Cuando los hidrogeles se compactan, se los denomina complejos polielectrolitos compactos (CoPECs). La incorporación de sales como NaCl genera que los iones interactúen con las cadenas poliméricas, interfiriendo en la formación de la red y originando materiales saloplásticos con propiedades diferenciadas. En este trabajo se desarrollaron y caracterizaron hidrogeles CoPECs utilizando polímeros naturales. En los primeros capítulos se trabajó con los polisacáridos quitosano y pectina. Para la formulación se variaron parámetros como el pH, el contenido de NaCl y la concentración polimérica (los materiales y métodos se describen en el Capítulo 2). Se obtuvieron CoPECs de quitosano y pectina de forma satisfactoria e incorporaron NaCl en algunos casos para evaluar su efecto sobre las propiedades finales de los hidrogeles. Además, se añadió un analgésico modelo, la lidocaína, y se realizaron estudios específicos para evaluar su aplicación potencial como apósitos para heridas. Los resultados permitieron determinar que podrían utilizarse en quemaduras de primer o segundo grado (Capítulo 3). También se incorporaron refuerzos con el objetivo de mejorar las propiedades mecánicas y antimicrobianas de los hidrogeles. Los CoPECs de quitosano y pectina con nanohilos de celulosa (CNWs) demostraron resultados prometedores: los nanohilos se incorporaron de forma efectiva, mantuvieron el efecto antibacteriano, incrementaron la porosidad y los valores de tasa de transmisión de vapor de agua, y mejoraron las propiedades mecánicas superficiales (Capítulo 4). Por otro lado, se desarrollaron CoPECs de gelatina y condroitín sulfato con o sin NaCl. Los materiales obtenidos fueron compactos y frágiles, lo que dificultaba su moldeado y limitaba su uso como apósitos. Mediante un cambio en el proceso de obtención, empleando secado por aspersión en lugar de compactación por centrífuga, se lograron obtener microgeles de gelatina y condroitín sulfato. A estos microgeles se les incorporaron nanopartículas de plata (AgNPs), las cuales otorgaron propiedades antibacterianas. Además, se caracterizaron y analizaron otras propiedades de estos geles con miras a su uso en heridas agudas. En el ensayo de hemólisis, relacionado con su potencial aplicación, se observó que los microgeles con AgNPs presentaron un porcentaje de hemólisis mayor que los microgeles sin nanopartículas (Capítulo 5). En conclusión, este trabajo aborda la formulación, caracterización y estudio de biohidrogeles compuestos con aplicación potencial en apósitos para distintos tipos de heridas. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-03-17 |
dc.type.none.fl_str_mv |
Thesis info:eu-repo/semantics/acceptedVersion info:eu-repo/semantics/doctoralThesis http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
status_str |
acceptedVersion |
format |
doctoralThesis |
dc.identifier.none.fl_str_mv |
http://rinfi.fi.mdp.edu.ar/handle/123456789/1020 |
url |
http://rinfi.fi.mdp.edu.ar/handle/123456789/1020 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina |
publisher.none.fl_str_mv |
Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional Facultad de Ingeniería - UNMDP instname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería |
reponame_str |
Repositorio Institucional Facultad de Ingeniería - UNMDP |
collection |
Repositorio Institucional Facultad de Ingeniería - UNMDP |
instname_str |
Universidad Nacional de Mar del Plata. Facultad de Ingeniería |
repository.name.fl_str_mv |
Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingeniería |
repository.mail.fl_str_mv |
josemrvs@fi.mdp.edu.ar |
_version_ |
1843613803512594432 |
score |
12.490522 |