Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos

Autores
Caracciolo, Pablo C.
Año de publicación
2010
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión borrador
Colaborador/a o director/a de tesis
Abraham, Gustavo Abel
Descripción
Segmented polyurethanes (SPU) are block copolymers widely used as biomaterials due to their good biocompatibility and chemical and structural versatility, characteristics that allow a broad range of properties. In the biomedical field, SPU elastomers are mainly used in biostable implants and several biomedical devices. However, polyurethanes are susceptible to hydrolytic and oxidative degradation in physiological conditions, allowing the development of temporal applications for regenerative medicine. In this thesis, the design, synthesis, characterization, properties and processing of a series of novel bioresorbable polyurethane systems is presented. These materials are of interest for applications in tissue engineering. The polyols and chain extenders used in the synthesis of SPU were designed to promote microphase separation and semicrystalline soft-domain formation. Moreover, the use of those components and aliphatic diisocyanates ensure the bioresobability of their non toxic degradation byproducts. The effect of chain extender and hard segment structure and chemical composition in the thermal and mechanical properties of SPU films was analyzed. The different chemical structure and symmetry of both chain extenders and hard segments affected the phase separation. Thermodynamically, the synthesized HDI-based hard segments exhibited lower phase mixing with PCL soft segments than other HDI-based hard segments reported in the literature. The materials were soft elastomers, as demonstrated by the mechanical properties in tensile, loading cycles and tear. The in vitro biological properties, as determined by using several analytical techniques, displayed low platelet adhesion and activation, low thrombus formation, and low cytotoxicity, showing a priori a good biocompatibility of these materials. The electrospinning technology allowed the preparation of micro/nanofibrous polyurethane scaffolds by an appropriate selection of the processing parameters and solution properties. Thermal and mechanical properties of these micro/nanofibrous scaffolds were analyzed and compared with the obtained for the films. The characteristics of the processing technique led to different crystalline morphologies. The scaffolds displayed a highly interconnected porous structure, microstructure useful for soft tissue engineering and drug delivery applications. The degradative behavior of films and scaffolds were studied in physiological and accelerated conditions. The evaluation of hydrolytic and oxidative stability as a function of composition, structure and morphology of each system was performed. Finally, polyurethane networks with controlled hydrophilicity were obtained by using hydrophilic and hydrophobic monomers. Thermal and water uptake were studied as a function of the composition for each formulation. The presence of chemical and physical crosslinking introduced an interesting feature that affected the observed properties.
Fil: Caracciolo, Pablo C. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Materia
Poliuretanos biorreabsorbibles
Poliuretanos segmentados
Copolímeros
Biomateriales
Aplicaciones biomédicas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/4.0/
Repositorio
Repositorio Institucional Facultad de Ingeniería - UNMDP
Institución
Universidad Nacional de Mar del Plata. Facultad de Ingeniería
OAI Identificador
oai:rinfi.fi.mdp.edu.ar:123456789/132

id RINFIUNMDP_83b84988c56473c5f78db042ff104db5
oai_identifier_str oai:rinfi.fi.mdp.edu.ar:123456789/132
network_acronym_str RINFIUNMDP
repository_id_str
network_name_str Repositorio Institucional Facultad de Ingeniería - UNMDP
spelling Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidosCaracciolo, Pablo C.Poliuretanos biorreabsorbiblesPoliuretanos segmentadosCopolímerosBiomaterialesAplicaciones biomédicasSegmented polyurethanes (SPU) are block copolymers widely used as biomaterials due to their good biocompatibility and chemical and structural versatility, characteristics that allow a broad range of properties. In the biomedical field, SPU elastomers are mainly used in biostable implants and several biomedical devices. However, polyurethanes are susceptible to hydrolytic and oxidative degradation in physiological conditions, allowing the development of temporal applications for regenerative medicine. In this thesis, the design, synthesis, characterization, properties and processing of a series of novel bioresorbable polyurethane systems is presented. These materials are of interest for applications in tissue engineering. The polyols and chain extenders used in the synthesis of SPU were designed to promote microphase separation and semicrystalline soft-domain formation. Moreover, the use of those components and aliphatic diisocyanates ensure the bioresobability of their non toxic degradation byproducts. The effect of chain extender and hard segment structure and chemical composition in the thermal and mechanical properties of SPU films was analyzed. The different chemical structure and symmetry of both chain extenders and hard segments affected the phase separation. Thermodynamically, the synthesized HDI-based hard segments exhibited lower phase mixing with PCL soft segments than other HDI-based hard segments reported in the literature. The materials were soft elastomers, as demonstrated by the mechanical properties in tensile, loading cycles and tear. The in vitro biological properties, as determined by using several analytical techniques, displayed low platelet adhesion and activation, low thrombus formation, and low cytotoxicity, showing a priori a good biocompatibility of these materials. The electrospinning technology allowed the preparation of micro/nanofibrous polyurethane scaffolds by an appropriate selection of the processing parameters and solution properties. Thermal and mechanical properties of these micro/nanofibrous scaffolds were analyzed and compared with the obtained for the films. The characteristics of the processing technique led to different crystalline morphologies. The scaffolds displayed a highly interconnected porous structure, microstructure useful for soft tissue engineering and drug delivery applications. The degradative behavior of films and scaffolds were studied in physiological and accelerated conditions. The evaluation of hydrolytic and oxidative stability as a function of composition, structure and morphology of each system was performed. Finally, polyurethane networks with controlled hydrophilicity were obtained by using hydrophilic and hydrophobic monomers. Thermal and water uptake were studied as a function of the composition for each formulation. The presence of chemical and physical crosslinking introduced an interesting feature that affected the observed properties.Fil: Caracciolo, Pablo C. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaUniversidad Nacional de Mar del Plata. Facultad de Ingeniería. ArgentinaAbraham, Gustavo Abel2010-03-01Thesisinfo:eu-repo/semantics/draftinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://rinfi.fi.mdp.edu.ar/handle/123456789/132spainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/reponame:Repositorio Institucional Facultad de Ingeniería - UNMDPinstname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería2025-09-29T15:02:36Zoai:rinfi.fi.mdp.edu.ar:123456789/132instacron:FI-UNMDPInstitucionalhttps://rinfi.fi.mdp.edu.ar/Universidad públicahttps://www.fi.mdp.edu.ar/https://rinfi.fi.mdp.edu.ar/oai/snrdjosemrvs@fi.mdp.edu.arArgentinaopendoar:2025-09-29 15:02:36.699Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingenieríafalse
dc.title.none.fl_str_mv Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
title Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
spellingShingle Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
Caracciolo, Pablo C.
Poliuretanos biorreabsorbibles
Poliuretanos segmentados
Copolímeros
Biomateriales
Aplicaciones biomédicas
title_short Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
title_full Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
title_fullStr Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
title_full_unstemmed Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
title_sort Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
dc.creator.none.fl_str_mv Caracciolo, Pablo C.
author Caracciolo, Pablo C.
author_facet Caracciolo, Pablo C.
author_role author
dc.contributor.none.fl_str_mv Abraham, Gustavo Abel
dc.subject.none.fl_str_mv Poliuretanos biorreabsorbibles
Poliuretanos segmentados
Copolímeros
Biomateriales
Aplicaciones biomédicas
topic Poliuretanos biorreabsorbibles
Poliuretanos segmentados
Copolímeros
Biomateriales
Aplicaciones biomédicas
dc.description.none.fl_txt_mv Segmented polyurethanes (SPU) are block copolymers widely used as biomaterials due to their good biocompatibility and chemical and structural versatility, characteristics that allow a broad range of properties. In the biomedical field, SPU elastomers are mainly used in biostable implants and several biomedical devices. However, polyurethanes are susceptible to hydrolytic and oxidative degradation in physiological conditions, allowing the development of temporal applications for regenerative medicine. In this thesis, the design, synthesis, characterization, properties and processing of a series of novel bioresorbable polyurethane systems is presented. These materials are of interest for applications in tissue engineering. The polyols and chain extenders used in the synthesis of SPU were designed to promote microphase separation and semicrystalline soft-domain formation. Moreover, the use of those components and aliphatic diisocyanates ensure the bioresobability of their non toxic degradation byproducts. The effect of chain extender and hard segment structure and chemical composition in the thermal and mechanical properties of SPU films was analyzed. The different chemical structure and symmetry of both chain extenders and hard segments affected the phase separation. Thermodynamically, the synthesized HDI-based hard segments exhibited lower phase mixing with PCL soft segments than other HDI-based hard segments reported in the literature. The materials were soft elastomers, as demonstrated by the mechanical properties in tensile, loading cycles and tear. The in vitro biological properties, as determined by using several analytical techniques, displayed low platelet adhesion and activation, low thrombus formation, and low cytotoxicity, showing a priori a good biocompatibility of these materials. The electrospinning technology allowed the preparation of micro/nanofibrous polyurethane scaffolds by an appropriate selection of the processing parameters and solution properties. Thermal and mechanical properties of these micro/nanofibrous scaffolds were analyzed and compared with the obtained for the films. The characteristics of the processing technique led to different crystalline morphologies. The scaffolds displayed a highly interconnected porous structure, microstructure useful for soft tissue engineering and drug delivery applications. The degradative behavior of films and scaffolds were studied in physiological and accelerated conditions. The evaluation of hydrolytic and oxidative stability as a function of composition, structure and morphology of each system was performed. Finally, polyurethane networks with controlled hydrophilicity were obtained by using hydrophilic and hydrophobic monomers. Thermal and water uptake were studied as a function of the composition for each formulation. The presence of chemical and physical crosslinking introduced an interesting feature that affected the observed properties.
Fil: Caracciolo, Pablo C. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
description Segmented polyurethanes (SPU) are block copolymers widely used as biomaterials due to their good biocompatibility and chemical and structural versatility, characteristics that allow a broad range of properties. In the biomedical field, SPU elastomers are mainly used in biostable implants and several biomedical devices. However, polyurethanes are susceptible to hydrolytic and oxidative degradation in physiological conditions, allowing the development of temporal applications for regenerative medicine. In this thesis, the design, synthesis, characterization, properties and processing of a series of novel bioresorbable polyurethane systems is presented. These materials are of interest for applications in tissue engineering. The polyols and chain extenders used in the synthesis of SPU were designed to promote microphase separation and semicrystalline soft-domain formation. Moreover, the use of those components and aliphatic diisocyanates ensure the bioresobability of their non toxic degradation byproducts. The effect of chain extender and hard segment structure and chemical composition in the thermal and mechanical properties of SPU films was analyzed. The different chemical structure and symmetry of both chain extenders and hard segments affected the phase separation. Thermodynamically, the synthesized HDI-based hard segments exhibited lower phase mixing with PCL soft segments than other HDI-based hard segments reported in the literature. The materials were soft elastomers, as demonstrated by the mechanical properties in tensile, loading cycles and tear. The in vitro biological properties, as determined by using several analytical techniques, displayed low platelet adhesion and activation, low thrombus formation, and low cytotoxicity, showing a priori a good biocompatibility of these materials. The electrospinning technology allowed the preparation of micro/nanofibrous polyurethane scaffolds by an appropriate selection of the processing parameters and solution properties. Thermal and mechanical properties of these micro/nanofibrous scaffolds were analyzed and compared with the obtained for the films. The characteristics of the processing technique led to different crystalline morphologies. The scaffolds displayed a highly interconnected porous structure, microstructure useful for soft tissue engineering and drug delivery applications. The degradative behavior of films and scaffolds were studied in physiological and accelerated conditions. The evaluation of hydrolytic and oxidative stability as a function of composition, structure and morphology of each system was performed. Finally, polyurethane networks with controlled hydrophilicity were obtained by using hydrophilic and hydrophobic monomers. Thermal and water uptake were studied as a function of the composition for each formulation. The presence of chemical and physical crosslinking introduced an interesting feature that affected the observed properties.
publishDate 2010
dc.date.none.fl_str_mv 2010-03-01
dc.type.none.fl_str_mv Thesis
info:eu-repo/semantics/draft
info:eu-repo/semantics/doctoralThesis
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
status_str draft
format doctoralThesis
dc.identifier.none.fl_str_mv http://rinfi.fi.mdp.edu.ar/handle/123456789/132
url http://rinfi.fi.mdp.edu.ar/handle/123456789/132
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Argentina
publisher.none.fl_str_mv Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Argentina
dc.source.none.fl_str_mv reponame:Repositorio Institucional Facultad de Ingeniería - UNMDP
instname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería
reponame_str Repositorio Institucional Facultad de Ingeniería - UNMDP
collection Repositorio Institucional Facultad de Ingeniería - UNMDP
instname_str Universidad Nacional de Mar del Plata. Facultad de Ingeniería
repository.name.fl_str_mv Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingeniería
repository.mail.fl_str_mv josemrvs@fi.mdp.edu.ar
_version_ 1844623359296405504
score 12.559606