Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos
- Autores
- Caracciolo, Pablo C.
- Año de publicación
- 2010
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión borrador
- Colaborador/a o director/a de tesis
- Abraham, Gustavo Abel
- Descripción
- Segmented polyurethanes (SPU) are block copolymers widely used as biomaterials due to their good biocompatibility and chemical and structural versatility, characteristics that allow a broad range of properties. In the biomedical field, SPU elastomers are mainly used in biostable implants and several biomedical devices. However, polyurethanes are susceptible to hydrolytic and oxidative degradation in physiological conditions, allowing the development of temporal applications for regenerative medicine. In this thesis, the design, synthesis, characterization, properties and processing of a series of novel bioresorbable polyurethane systems is presented. These materials are of interest for applications in tissue engineering. The polyols and chain extenders used in the synthesis of SPU were designed to promote microphase separation and semicrystalline soft-domain formation. Moreover, the use of those components and aliphatic diisocyanates ensure the bioresobability of their non toxic degradation byproducts. The effect of chain extender and hard segment structure and chemical composition in the thermal and mechanical properties of SPU films was analyzed. The different chemical structure and symmetry of both chain extenders and hard segments affected the phase separation. Thermodynamically, the synthesized HDI-based hard segments exhibited lower phase mixing with PCL soft segments than other HDI-based hard segments reported in the literature. The materials were soft elastomers, as demonstrated by the mechanical properties in tensile, loading cycles and tear. The in vitro biological properties, as determined by using several analytical techniques, displayed low platelet adhesion and activation, low thrombus formation, and low cytotoxicity, showing a priori a good biocompatibility of these materials. The electrospinning technology allowed the preparation of micro/nanofibrous polyurethane scaffolds by an appropriate selection of the processing parameters and solution properties. Thermal and mechanical properties of these micro/nanofibrous scaffolds were analyzed and compared with the obtained for the films. The characteristics of the processing technique led to different crystalline morphologies. The scaffolds displayed a highly interconnected porous structure, microstructure useful for soft tissue engineering and drug delivery applications. The degradative behavior of films and scaffolds were studied in physiological and accelerated conditions. The evaluation of hydrolytic and oxidative stability as a function of composition, structure and morphology of each system was performed. Finally, polyurethane networks with controlled hydrophilicity were obtained by using hydrophilic and hydrophobic monomers. Thermal and water uptake were studied as a function of the composition for each formulation. The presence of chemical and physical crosslinking introduced an interesting feature that affected the observed properties.
Fil: Caracciolo, Pablo C. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina - Materia
-
Poliuretanos biorreabsorbibles
Poliuretanos segmentados
Copolímeros
Biomateriales
Aplicaciones biomédicas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de Mar del Plata. Facultad de Ingeniería
- OAI Identificador
- oai:rinfi.fi.mdp.edu.ar:123456789/132
Ver los metadatos del registro completo
id |
RINFIUNMDP_83b84988c56473c5f78db042ff104db5 |
---|---|
oai_identifier_str |
oai:rinfi.fi.mdp.edu.ar:123456789/132 |
network_acronym_str |
RINFIUNMDP |
repository_id_str |
|
network_name_str |
Repositorio Institucional Facultad de Ingeniería - UNMDP |
spelling |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidosCaracciolo, Pablo C.Poliuretanos biorreabsorbiblesPoliuretanos segmentadosCopolímerosBiomaterialesAplicaciones biomédicasSegmented polyurethanes (SPU) are block copolymers widely used as biomaterials due to their good biocompatibility and chemical and structural versatility, characteristics that allow a broad range of properties. In the biomedical field, SPU elastomers are mainly used in biostable implants and several biomedical devices. However, polyurethanes are susceptible to hydrolytic and oxidative degradation in physiological conditions, allowing the development of temporal applications for regenerative medicine. In this thesis, the design, synthesis, characterization, properties and processing of a series of novel bioresorbable polyurethane systems is presented. These materials are of interest for applications in tissue engineering. The polyols and chain extenders used in the synthesis of SPU were designed to promote microphase separation and semicrystalline soft-domain formation. Moreover, the use of those components and aliphatic diisocyanates ensure the bioresobability of their non toxic degradation byproducts. The effect of chain extender and hard segment structure and chemical composition in the thermal and mechanical properties of SPU films was analyzed. The different chemical structure and symmetry of both chain extenders and hard segments affected the phase separation. Thermodynamically, the synthesized HDI-based hard segments exhibited lower phase mixing with PCL soft segments than other HDI-based hard segments reported in the literature. The materials were soft elastomers, as demonstrated by the mechanical properties in tensile, loading cycles and tear. The in vitro biological properties, as determined by using several analytical techniques, displayed low platelet adhesion and activation, low thrombus formation, and low cytotoxicity, showing a priori a good biocompatibility of these materials. The electrospinning technology allowed the preparation of micro/nanofibrous polyurethane scaffolds by an appropriate selection of the processing parameters and solution properties. Thermal and mechanical properties of these micro/nanofibrous scaffolds were analyzed and compared with the obtained for the films. The characteristics of the processing technique led to different crystalline morphologies. The scaffolds displayed a highly interconnected porous structure, microstructure useful for soft tissue engineering and drug delivery applications. The degradative behavior of films and scaffolds were studied in physiological and accelerated conditions. The evaluation of hydrolytic and oxidative stability as a function of composition, structure and morphology of each system was performed. Finally, polyurethane networks with controlled hydrophilicity were obtained by using hydrophilic and hydrophobic monomers. Thermal and water uptake were studied as a function of the composition for each formulation. The presence of chemical and physical crosslinking introduced an interesting feature that affected the observed properties.Fil: Caracciolo, Pablo C. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaUniversidad Nacional de Mar del Plata. Facultad de Ingeniería. ArgentinaAbraham, Gustavo Abel2010-03-01Thesisinfo:eu-repo/semantics/draftinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://rinfi.fi.mdp.edu.ar/handle/123456789/132spainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/reponame:Repositorio Institucional Facultad de Ingeniería - UNMDPinstname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería2025-09-29T15:02:36Zoai:rinfi.fi.mdp.edu.ar:123456789/132instacron:FI-UNMDPInstitucionalhttps://rinfi.fi.mdp.edu.ar/Universidad públicahttps://www.fi.mdp.edu.ar/https://rinfi.fi.mdp.edu.ar/oai/snrdjosemrvs@fi.mdp.edu.arArgentinaopendoar:2025-09-29 15:02:36.699Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingenieríafalse |
dc.title.none.fl_str_mv |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos |
title |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos |
spellingShingle |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos Caracciolo, Pablo C. Poliuretanos biorreabsorbibles Poliuretanos segmentados Copolímeros Biomateriales Aplicaciones biomédicas |
title_short |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos |
title_full |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos |
title_fullStr |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos |
title_full_unstemmed |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos |
title_sort |
Matrices poliuretánicas biorreabsorbibles para aplicaciones en ingeniería de tejidos |
dc.creator.none.fl_str_mv |
Caracciolo, Pablo C. |
author |
Caracciolo, Pablo C. |
author_facet |
Caracciolo, Pablo C. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Abraham, Gustavo Abel |
dc.subject.none.fl_str_mv |
Poliuretanos biorreabsorbibles Poliuretanos segmentados Copolímeros Biomateriales Aplicaciones biomédicas |
topic |
Poliuretanos biorreabsorbibles Poliuretanos segmentados Copolímeros Biomateriales Aplicaciones biomédicas |
dc.description.none.fl_txt_mv |
Segmented polyurethanes (SPU) are block copolymers widely used as biomaterials due to their good biocompatibility and chemical and structural versatility, characteristics that allow a broad range of properties. In the biomedical field, SPU elastomers are mainly used in biostable implants and several biomedical devices. However, polyurethanes are susceptible to hydrolytic and oxidative degradation in physiological conditions, allowing the development of temporal applications for regenerative medicine. In this thesis, the design, synthesis, characterization, properties and processing of a series of novel bioresorbable polyurethane systems is presented. These materials are of interest for applications in tissue engineering. The polyols and chain extenders used in the synthesis of SPU were designed to promote microphase separation and semicrystalline soft-domain formation. Moreover, the use of those components and aliphatic diisocyanates ensure the bioresobability of their non toxic degradation byproducts. The effect of chain extender and hard segment structure and chemical composition in the thermal and mechanical properties of SPU films was analyzed. The different chemical structure and symmetry of both chain extenders and hard segments affected the phase separation. Thermodynamically, the synthesized HDI-based hard segments exhibited lower phase mixing with PCL soft segments than other HDI-based hard segments reported in the literature. The materials were soft elastomers, as demonstrated by the mechanical properties in tensile, loading cycles and tear. The in vitro biological properties, as determined by using several analytical techniques, displayed low platelet adhesion and activation, low thrombus formation, and low cytotoxicity, showing a priori a good biocompatibility of these materials. The electrospinning technology allowed the preparation of micro/nanofibrous polyurethane scaffolds by an appropriate selection of the processing parameters and solution properties. Thermal and mechanical properties of these micro/nanofibrous scaffolds were analyzed and compared with the obtained for the films. The characteristics of the processing technique led to different crystalline morphologies. The scaffolds displayed a highly interconnected porous structure, microstructure useful for soft tissue engineering and drug delivery applications. The degradative behavior of films and scaffolds were studied in physiological and accelerated conditions. The evaluation of hydrolytic and oxidative stability as a function of composition, structure and morphology of each system was performed. Finally, polyurethane networks with controlled hydrophilicity were obtained by using hydrophilic and hydrophobic monomers. Thermal and water uptake were studied as a function of the composition for each formulation. The presence of chemical and physical crosslinking introduced an interesting feature that affected the observed properties. Fil: Caracciolo, Pablo C. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina |
description |
Segmented polyurethanes (SPU) are block copolymers widely used as biomaterials due to their good biocompatibility and chemical and structural versatility, characteristics that allow a broad range of properties. In the biomedical field, SPU elastomers are mainly used in biostable implants and several biomedical devices. However, polyurethanes are susceptible to hydrolytic and oxidative degradation in physiological conditions, allowing the development of temporal applications for regenerative medicine. In this thesis, the design, synthesis, characterization, properties and processing of a series of novel bioresorbable polyurethane systems is presented. These materials are of interest for applications in tissue engineering. The polyols and chain extenders used in the synthesis of SPU were designed to promote microphase separation and semicrystalline soft-domain formation. Moreover, the use of those components and aliphatic diisocyanates ensure the bioresobability of their non toxic degradation byproducts. The effect of chain extender and hard segment structure and chemical composition in the thermal and mechanical properties of SPU films was analyzed. The different chemical structure and symmetry of both chain extenders and hard segments affected the phase separation. Thermodynamically, the synthesized HDI-based hard segments exhibited lower phase mixing with PCL soft segments than other HDI-based hard segments reported in the literature. The materials were soft elastomers, as demonstrated by the mechanical properties in tensile, loading cycles and tear. The in vitro biological properties, as determined by using several analytical techniques, displayed low platelet adhesion and activation, low thrombus formation, and low cytotoxicity, showing a priori a good biocompatibility of these materials. The electrospinning technology allowed the preparation of micro/nanofibrous polyurethane scaffolds by an appropriate selection of the processing parameters and solution properties. Thermal and mechanical properties of these micro/nanofibrous scaffolds were analyzed and compared with the obtained for the films. The characteristics of the processing technique led to different crystalline morphologies. The scaffolds displayed a highly interconnected porous structure, microstructure useful for soft tissue engineering and drug delivery applications. The degradative behavior of films and scaffolds were studied in physiological and accelerated conditions. The evaluation of hydrolytic and oxidative stability as a function of composition, structure and morphology of each system was performed. Finally, polyurethane networks with controlled hydrophilicity were obtained by using hydrophilic and hydrophobic monomers. Thermal and water uptake were studied as a function of the composition for each formulation. The presence of chemical and physical crosslinking introduced an interesting feature that affected the observed properties. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03-01 |
dc.type.none.fl_str_mv |
Thesis info:eu-repo/semantics/draft info:eu-repo/semantics/doctoralThesis http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
status_str |
draft |
format |
doctoralThesis |
dc.identifier.none.fl_str_mv |
http://rinfi.fi.mdp.edu.ar/handle/123456789/132 |
url |
http://rinfi.fi.mdp.edu.ar/handle/123456789/132 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Argentina |
publisher.none.fl_str_mv |
Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Argentina |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional Facultad de Ingeniería - UNMDP instname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería |
reponame_str |
Repositorio Institucional Facultad de Ingeniería - UNMDP |
collection |
Repositorio Institucional Facultad de Ingeniería - UNMDP |
instname_str |
Universidad Nacional de Mar del Plata. Facultad de Ingeniería |
repository.name.fl_str_mv |
Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingeniería |
repository.mail.fl_str_mv |
josemrvs@fi.mdp.edu.ar |
_version_ |
1844623359296405504 |
score |
12.559606 |