Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting

Autores
Macagnano, A.; Molinari, F. N.; Papa, P.; Mancini, T.; Lupi, S.; D Arco, A.; Taddei, A. R.; Serrecchia, S.; De Cesare, F.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.
Fil: Macagnano, A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); Argentina
Fil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Papa, P. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Mancini, T. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: Lupi, S. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: D Arco, A. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: Taddei, A. R. Universit degli Studi della Tuscia (UNITUS); Italia
Fil: Serrecchia, S. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: De Cesare, F. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: De Cesare, F. Universit degli Studi della Tuscia (UNITUS); Italia
Fuente
Nanomaterials 2024, 14(13), 1123
Materia
Sensores
Nanofibras
Conductores el ctricos
Impresiones
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/4.0/
Repositorio
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
Institución
Instituto Nacional de Tecnología Industrial
OAI Identificador
nuevadc:2025MolinariF2_pdf

id RIINTI_2a2f9b236689cef647264df91619101d
oai_identifier_str nuevadc:2025MolinariF2_pdf
network_acronym_str RIINTI
repository_id_str
network_name_str Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
spelling Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular ImprintingMacagnano, A.Molinari, F. N.Papa, P.Mancini, T.Lupi, S.D Arco, A.Taddei, A. R.Serrecchia, S.De Cesare, F.SensoresNanofibrasConductores el ctricosImpresionesDetecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.Fil: Macagnano, A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); ArgentinaFil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Papa, P. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Mancini, T. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); ItaliaFil: Lupi, S. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); ItaliaFil: D Arco, A. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); ItaliaFil: Taddei, A. R. Universit degli Studi della Tuscia (UNITUS); ItaliaFil: Serrecchia, S. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: De Cesare, F. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: De Cesare, F. Universit degli Studi della Tuscia (UNITUS); ItaliaMDPI2024info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2025MolinariF2.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF2_p.dir/doc.pdfNanomaterials 2024, 14(13), 1123reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/openAccess2025-09-29T15:02:01Znuevadc:2025MolinariF2_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-09-29 15:02:02.329Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse
dc.title.none.fl_str_mv Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
title Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
spellingShingle Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
Macagnano, A.
Sensores
Nanofibras
Conductores el ctricos
Impresiones
title_short Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
title_full Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
title_fullStr Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
title_full_unstemmed Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
title_sort Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
dc.creator.none.fl_str_mv Macagnano, A.
Molinari, F. N.
Papa, P.
Mancini, T.
Lupi, S.
D Arco, A.
Taddei, A. R.
Serrecchia, S.
De Cesare, F.
author Macagnano, A.
author_facet Macagnano, A.
Molinari, F. N.
Papa, P.
Mancini, T.
Lupi, S.
D Arco, A.
Taddei, A. R.
Serrecchia, S.
De Cesare, F.
author_role author
author2 Molinari, F. N.
Papa, P.
Mancini, T.
Lupi, S.
D Arco, A.
Taddei, A. R.
Serrecchia, S.
De Cesare, F.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Sensores
Nanofibras
Conductores el ctricos
Impresiones
topic Sensores
Nanofibras
Conductores el ctricos
Impresiones
dc.description.none.fl_txt_mv Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.
Fil: Macagnano, A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); Argentina
Fil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Papa, P. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Mancini, T. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: Lupi, S. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: D Arco, A. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: Taddei, A. R. Universit degli Studi della Tuscia (UNITUS); Italia
Fil: Serrecchia, S. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: De Cesare, F. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: De Cesare, F. Universit degli Studi della Tuscia (UNITUS); Italia
description Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.
publishDate 2024
dc.date.none.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv 2025MolinariF2.pdf
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF2_p.dir/doc.pdf
identifier_str_mv 2025MolinariF2.pdf
url https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF2_p.dir/doc.pdf
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/
openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Nanomaterials 2024, 14(13), 1123
reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
instname:Instituto Nacional de Tecnología Industrial
reponame_str Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
collection Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
instname_str Instituto Nacional de Tecnología Industrial
repository.name.fl_str_mv Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial
repository.mail.fl_str_mv pfalcato@inti.gob.ar
_version_ 1844623655306264576
score 12.559606