Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
- Autores
- Macagnano, A.; Molinari, F. N.; Papa, P.; Mancini, T.; Lupi, S.; D Arco, A.; Taddei, A. R.; Serrecchia, S.; De Cesare, F.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.
Fil: Macagnano, A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); Argentina
Fil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Papa, P. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: Mancini, T. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: Lupi, S. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: D Arco, A. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia
Fil: Taddei, A. R. Universit degli Studi della Tuscia (UNITUS); Italia
Fil: Serrecchia, S. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: De Cesare, F. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Fil: De Cesare, F. Universit degli Studi della Tuscia (UNITUS); Italia - Fuente
- Nanomaterials 2024, 14(13), 1123
- Materia
-
Sensores
Nanofibras
Conductores el ctricos
Impresiones - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Industrial
- OAI Identificador
- nuevadc:2025MolinariF2_pdf
Ver los metadatos del registro completo
id |
RIINTI_2a2f9b236689cef647264df91619101d |
---|---|
oai_identifier_str |
nuevadc:2025MolinariF2_pdf |
network_acronym_str |
RIINTI |
repository_id_str |
|
network_name_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
spelling |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular ImprintingMacagnano, A.Molinari, F. N.Papa, P.Mancini, T.Lupi, S.D Arco, A.Taddei, A. R.Serrecchia, S.De Cesare, F.SensoresNanofibrasConductores el ctricosImpresionesDetecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.Fil: Macagnano, A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); ArgentinaFil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Papa, P. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: Mancini, T. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); ItaliaFil: Lupi, S. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); ItaliaFil: D Arco, A. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); ItaliaFil: Taddei, A. R. Universit degli Studi della Tuscia (UNITUS); ItaliaFil: Serrecchia, S. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: De Cesare, F. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); ItaliaFil: De Cesare, F. Universit degli Studi della Tuscia (UNITUS); ItaliaMDPI2024info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2025MolinariF2.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF2_p.dir/doc.pdfNanomaterials 2024, 14(13), 1123reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/openAccess2025-09-29T15:02:01Znuevadc:2025MolinariF2_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-09-29 15:02:02.329Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse |
dc.title.none.fl_str_mv |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting |
title |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting |
spellingShingle |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting Macagnano, A. Sensores Nanofibras Conductores el ctricos Impresiones |
title_short |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting |
title_full |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting |
title_fullStr |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting |
title_full_unstemmed |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting |
title_sort |
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting |
dc.creator.none.fl_str_mv |
Macagnano, A. Molinari, F. N. Papa, P. Mancini, T. Lupi, S. D Arco, A. Taddei, A. R. Serrecchia, S. De Cesare, F. |
author |
Macagnano, A. |
author_facet |
Macagnano, A. Molinari, F. N. Papa, P. Mancini, T. Lupi, S. D Arco, A. Taddei, A. R. Serrecchia, S. De Cesare, F. |
author_role |
author |
author2 |
Molinari, F. N. Papa, P. Mancini, T. Lupi, S. D Arco, A. Taddei, A. R. Serrecchia, S. De Cesare, F. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Sensores Nanofibras Conductores el ctricos Impresiones |
topic |
Sensores Nanofibras Conductores el ctricos Impresiones |
dc.description.none.fl_txt_mv |
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring. Fil: Macagnano, A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia Fil: Molinari, F. N. Instituto Nacional de Tecnolog a Industrial. Textiles (INTI-Textiles); Argentina Fil: Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia Fil: Papa, P. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia Fil: Mancini, T. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia Fil: Lupi, S. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia Fil: D Arco, A. Sapienza Universit di Roma. Dipartimento di Fisica (UNIROMA); Italia Fil: Taddei, A. R. Universit degli Studi della Tuscia (UNITUS); Italia Fil: Serrecchia, S. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia Fil: De Cesare, F. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia Fil: De Cesare, F. Universit degli Studi della Tuscia (UNITUS); Italia |
description |
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
2025MolinariF2.pdf https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF2_p.dir/doc.pdf |
identifier_str_mv |
2025MolinariF2.pdf |
url |
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2025Moli/nariF2_p.dir/doc.pdf |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Nanomaterials 2024, 14(13), 1123 reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) instname:Instituto Nacional de Tecnología Industrial |
reponame_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
collection |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
instname_str |
Instituto Nacional de Tecnología Industrial |
repository.name.fl_str_mv |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial |
repository.mail.fl_str_mv |
pfalcato@inti.gob.ar |
_version_ |
1844623655306264576 |
score |
12.559606 |