La herencia oscura del logicismo

Autores
Ferreirós, José
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Ferreirós, José. Universidad de Sevilla. Departamento de Filosofía y Lógica; España.
El logicismo suele figurar de modo estándar en los manuales como una de las principales alternativas en la fundamentación de las matemáticas, si bien su atractivo disminuyó considerablemente desde aprox. 1950. Bien es cierto que la corriente neologicista ha revitalizado dicha tendencia sobre la base del Principio de Hume y el Teorema de Frege, pero aún así el neologicismo se limita a la aritmética y no aspira a dar cuenta de la matemática en su conjunto. En este trabajo no pretendemos centrarnos en el logicismo clásico de Frege y Dedekind, ni en el período de Russell y Carnap, ni tampoco en la corriente neologicista, sino que nuestra intención es llamar la atención hacia determinadas herencias del logicismo que suelen pasar inadvertidas. En las décadas de 1920, 1930 y 1940 aprox., la tesis logicista estimuló algunas innovaciones de bastante calado en la lógica matemática. Concretamente, puede argumentarse que dos ideas clave ligadas a la semántica formal tienen su origen en la idea de lógica promovida por el logicismo: la expansión de la metamatemática operada por Tarski, que abrió el camino hacia la teoría de modelos; y la insistencia en la semántica “plena” o conjuntista como “estándar” para la lógica de segundo orden. El artículo propone un análisis de dichas herencias e insiste en que la teoría lógica debería evitar algunas de sus implicaciones.
Logicism finds a prominent place in textbooks as one of the main alternatives in the foundations of mathematics, even though it lost much of its attraction from about 1950. Of course the neologicist trend has revitalized the movement on the basis of Hume’s Principle and Frege’s Theorem, but even so neologicism restricts itself to arithmetic and does not aim to account for all of mathematics. The present contribution does not focus on the classical logicism of Frege and Dedekind, nor on the Russell-Carnap period, and also not on recent neologicism; its aim is to call attention to some forms of heritage from logicism that normally go quite unnoticed. In the 1920s, 1930s and 1940s, the logicist thesis became a stimulus for some deep innovations in the field of mathematical logic. One can argue, in particular, that two key ideas linked with formal semantics had their origins in the conception of logic associated with the logicist trend – the expansion of metamathematics brought about by Tarski, opening the way to model theory, and the insistence on the “full” set-theoretic semantics as “standard” for second-order logic. The paper proposes an analysis of those inheritances and argues that that logical theory ought to avoid some of their implications.
Fuente
Metatheoria
1853-2322 (impresa)
1853-2330 (en línea)
Materia
Filosofía de las matemáticas
Lógica
Modelos
Lógica de segundo orden
Historia de la matemática
Logicismo
Philosophy of mathematics
Logic
Models
Second-order logic
History of mathematics
Logicism
Filosofia da matemática
Lógica de segunda ordem
História da matemática
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
RIDAA (UNQ)
Institución
Universidad Nacional de Quilmes
OAI Identificador
oai:ridaa.unq.edu.ar:20.500.11807/2395

id RIDAA_838a36326319886a2bbf6e62cb6db414
oai_identifier_str oai:ridaa.unq.edu.ar:20.500.11807/2395
network_acronym_str RIDAA
repository_id_str 4108
network_name_str RIDAA (UNQ)
spelling La herencia oscura del logicismoThe dark heritage of logicismFerreirós, JoséFilosofía de las matemáticasLógicaModelosLógica de segundo ordenHistoria de la matemáticaLogicismoPhilosophy of mathematicsLogicModelsSecond-order logicHistory of mathematicsLogicismFilosofia da matemáticaLógica de segunda ordemHistória da matemáticaFil: Ferreirós, José. Universidad de Sevilla. Departamento de Filosofía y Lógica; España.El logicismo suele figurar de modo estándar en los manuales como una de las principales alternativas en la fundamentación de las matemáticas, si bien su atractivo disminuyó considerablemente desde aprox. 1950. Bien es cierto que la corriente neologicista ha revitalizado dicha tendencia sobre la base del Principio de Hume y el Teorema de Frege, pero aún así el neologicismo se limita a la aritmética y no aspira a dar cuenta de la matemática en su conjunto. En este trabajo no pretendemos centrarnos en el logicismo clásico de Frege y Dedekind, ni en el período de Russell y Carnap, ni tampoco en la corriente neologicista, sino que nuestra intención es llamar la atención hacia determinadas herencias del logicismo que suelen pasar inadvertidas. En las décadas de 1920, 1930 y 1940 aprox., la tesis logicista estimuló algunas innovaciones de bastante calado en la lógica matemática. Concretamente, puede argumentarse que dos ideas clave ligadas a la semántica formal tienen su origen en la idea de lógica promovida por el logicismo: la expansión de la metamatemática operada por Tarski, que abrió el camino hacia la teoría de modelos; y la insistencia en la semántica “plena” o conjuntista como “estándar” para la lógica de segundo orden. El artículo propone un análisis de dichas herencias e insiste en que la teoría lógica debería evitar algunas de sus implicaciones.Logicism finds a prominent place in textbooks as one of the main alternatives in the foundations of mathematics, even though it lost much of its attraction from about 1950. Of course the neologicist trend has revitalized the movement on the basis of Hume’s Principle and Frege’s Theorem, but even so neologicism restricts itself to arithmetic and does not aim to account for all of mathematics. The present contribution does not focus on the classical logicism of Frege and Dedekind, nor on the Russell-Carnap period, and also not on recent neologicism; its aim is to call attention to some forms of heritage from logicism that normally go quite unnoticed. In the 1920s, 1930s and 1940s, the logicist thesis became a stimulus for some deep innovations in the field of mathematical logic. One can argue, in particular, that two key ideas linked with formal semantics had their origins in the conception of logic associated with the logicist trend – the expansion of metamathematics brought about by Tarski, opening the way to model theory, and the insistence on the “full” set-theoretic semantics as “standard” for second-order logic. The paper proposes an analysis of those inheritances and argues that that logical theory ought to avoid some of their implications.Universidad Nacional de QuilmesUniversidad Nacional de Tres de Febrero2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://ridaa.unq.edu.ar/handle/20.500.11807/2395Metatheoria1853-2322 (impresa)1853-2330 (en línea)reponame:RIDAA (UNQ)instname:Universidad Nacional de Quilmesspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/2025-09-04T09:43:48Zoai:ridaa.unq.edu.ar:20.500.11807/2395instacron:UNQInstitucionalhttp://ridaa.unq.edu.ar/Universidad públicaNo correspondehttp://ridaa.unq.edu.ar/oai/snrdalejandro@unq.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:41082025-09-04 09:43:48.632RIDAA (UNQ) - Universidad Nacional de Quilmesfalse
dc.title.none.fl_str_mv La herencia oscura del logicismo
The dark heritage of logicism
title La herencia oscura del logicismo
spellingShingle La herencia oscura del logicismo
Ferreirós, José
Filosofía de las matemáticas
Lógica
Modelos
Lógica de segundo orden
Historia de la matemática
Logicismo
Philosophy of mathematics
Logic
Models
Second-order logic
History of mathematics
Logicism
Filosofia da matemática
Lógica de segunda ordem
História da matemática
title_short La herencia oscura del logicismo
title_full La herencia oscura del logicismo
title_fullStr La herencia oscura del logicismo
title_full_unstemmed La herencia oscura del logicismo
title_sort La herencia oscura del logicismo
dc.creator.none.fl_str_mv Ferreirós, José
author Ferreirós, José
author_facet Ferreirós, José
author_role author
dc.subject.none.fl_str_mv Filosofía de las matemáticas
Lógica
Modelos
Lógica de segundo orden
Historia de la matemática
Logicismo
Philosophy of mathematics
Logic
Models
Second-order logic
History of mathematics
Logicism
Filosofia da matemática
Lógica de segunda ordem
História da matemática
topic Filosofía de las matemáticas
Lógica
Modelos
Lógica de segundo orden
Historia de la matemática
Logicismo
Philosophy of mathematics
Logic
Models
Second-order logic
History of mathematics
Logicism
Filosofia da matemática
Lógica de segunda ordem
História da matemática
dc.description.none.fl_txt_mv Fil: Ferreirós, José. Universidad de Sevilla. Departamento de Filosofía y Lógica; España.
El logicismo suele figurar de modo estándar en los manuales como una de las principales alternativas en la fundamentación de las matemáticas, si bien su atractivo disminuyó considerablemente desde aprox. 1950. Bien es cierto que la corriente neologicista ha revitalizado dicha tendencia sobre la base del Principio de Hume y el Teorema de Frege, pero aún así el neologicismo se limita a la aritmética y no aspira a dar cuenta de la matemática en su conjunto. En este trabajo no pretendemos centrarnos en el logicismo clásico de Frege y Dedekind, ni en el período de Russell y Carnap, ni tampoco en la corriente neologicista, sino que nuestra intención es llamar la atención hacia determinadas herencias del logicismo que suelen pasar inadvertidas. En las décadas de 1920, 1930 y 1940 aprox., la tesis logicista estimuló algunas innovaciones de bastante calado en la lógica matemática. Concretamente, puede argumentarse que dos ideas clave ligadas a la semántica formal tienen su origen en la idea de lógica promovida por el logicismo: la expansión de la metamatemática operada por Tarski, que abrió el camino hacia la teoría de modelos; y la insistencia en la semántica “plena” o conjuntista como “estándar” para la lógica de segundo orden. El artículo propone un análisis de dichas herencias e insiste en que la teoría lógica debería evitar algunas de sus implicaciones.
Logicism finds a prominent place in textbooks as one of the main alternatives in the foundations of mathematics, even though it lost much of its attraction from about 1950. Of course the neologicist trend has revitalized the movement on the basis of Hume’s Principle and Frege’s Theorem, but even so neologicism restricts itself to arithmetic and does not aim to account for all of mathematics. The present contribution does not focus on the classical logicism of Frege and Dedekind, nor on the Russell-Carnap period, and also not on recent neologicism; its aim is to call attention to some forms of heritage from logicism that normally go quite unnoticed. In the 1920s, 1930s and 1940s, the logicist thesis became a stimulus for some deep innovations in the field of mathematical logic. One can argue, in particular, that two key ideas linked with formal semantics had their origins in the conception of logic associated with the logicist trend – the expansion of metamathematics brought about by Tarski, opening the way to model theory, and the insistence on the “full” set-theoretic semantics as “standard” for second-order logic. The paper proposes an analysis of those inheritances and argues that that logical theory ought to avoid some of their implications.
description Fil: Ferreirós, José. Universidad de Sevilla. Departamento de Filosofía y Lógica; España.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://ridaa.unq.edu.ar/handle/20.500.11807/2395
url http://ridaa.unq.edu.ar/handle/20.500.11807/2395
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Quilmes
Universidad Nacional de Tres de Febrero
publisher.none.fl_str_mv Universidad Nacional de Quilmes
Universidad Nacional de Tres de Febrero
dc.source.none.fl_str_mv Metatheoria
1853-2322 (impresa)
1853-2330 (en línea)
reponame:RIDAA (UNQ)
instname:Universidad Nacional de Quilmes
reponame_str RIDAA (UNQ)
collection RIDAA (UNQ)
instname_str Universidad Nacional de Quilmes
repository.name.fl_str_mv RIDAA (UNQ) - Universidad Nacional de Quilmes
repository.mail.fl_str_mv alejandro@unq.edu.ar
_version_ 1842340600588795904
score 12.623145