Mathematical methods in atomic physics = Métodos matemáticos en física atómica

Autores
Del Punta, Jessica A.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Gasaneo, Gustavo
Ancarani, Lorenzo Ugo
Descripción
Los problemas de dispersión de partículas, como son los de dos y tres cuerpos, tienen una relevancia crucial en física atómica, pues permiten describir diversos procesos de colisiones. Hoy en día, los casos de dos cuerpos pueden ser resueltos con el grado de precisión numérica que se desee. Los problemas de dispersión de tres partículas cargadas son notoriamente más difíciles pero aún así algo similar, aunque en menor medida, puede establecerse. El objetivo de este trabajo es contribuir a la comprensión de procesos Coulombianos de dispersión de tres cuerpos desde un punto de vista analítico. Esto no solo es de fundamental interés, sino que también es útil para dominar mejor los enfoques numéricos que se actualmente se desarrollan dentro de la comunidad de colisiones atómicas. Para lograr este objetivo, proponemos aproximar la solución del problema con desarrollos en series de funciones adecuadas y expresables analíticamente. Al hacer esto, desarrollamos una serie de herramientas matemáticas relacionadas con funciones Coulombianas, ecuaciones diferenciales de segundo orden homogéneas y no homogéneas, y funciones hipergeométricas en una y dos variables. En primer lugar, trabajamos con las funciones de onda Coulombianas radiales y revisamos sus principales propiedades. Así, extendemos los resultados conocidos para dar expresiones analíticas de los coeficientes asociados al desarrollo, en serie de funciones de tipo Laguerre, de las funciones Coulombianas irregulares. También establecemos una nueva conexión entre los coeficientes asociados al desarrollo de la función Coulombiana regular y los polinomios de Meixner-Pollaczek. Esta relación nos permite deducir propiedades de ortogonalidad y clausura para estos coeficientes al considerar la carga como variable. Luego, estudiamos las funciones hipergeométricas de dos variables. Para algunas de ellas, como las funciones de Appell o las confluentes de Horn, presentamos expresiones analíticas de sus derivadas respecto de sus parámetros. También estudiamos un conjunto particular de funciones Sturmianas Generalizadas de dos cuerpos construidas considerando como potencial generador el potencial de Hulthén. Contrariamente al caso habitual, en el que las funciones Sturmianas se construyen numéricamente, las funciones Sturmianas de Hulthén poseen forma analítica. Sus propiedades matem´aticas pueden ser analíticamente estudiadas proporcionando una herramienta única para comprender y analizar los problemas de dispersión y sus soluciones. Además, proponemos un nuevo conjunto de funciones a las que llamamos funciones Quasi-Sturmianas. Estas funciones se presentan como una alternativa para expandir la solución buscada en procesos de dispersi´on de dos y tres cuerpos. Se definen como soluciones de una ecuación diferencial de tipo-Schrödinger, no homogénea. Por construcción, incluyen un comportamiento asintótico adecuado para resolver problemas de dispersión. Presentamos diferentes expresiones analíticas y exploramos sus propiedades matemáticas, vinculando y justificando los desarrollos realizados previamente. Para finalizar, utilizamos las funciones estudiadas (Sturmianas de Hulthén y Quasi-Sturmianas) en la resolución de problemas particulares de dos y tres cuerpos. La eficacia de estas funciones se ilustra comparando los resultados obtenidos con datos provenientes de la aplicación de otras metodologías.
Two and three-body scattering problems are of crucial relevance in atomic physics as they allow to describe different atomic collision processes. Nowadays, the two-body cases can be solved with any degree of numerical accuracy. Scattering problem involving three charged particles are notoriously difficult but something similar –though to a lesser extentcan be stated. The aim of this work is to contribute to the understanding of three-body Coulomb scattering problems from an analytical point of view. This is not only of fundamental interest, it is also useful to better master numerical approaches that are being developed within the collision community. To achieve this aim we propose to approximate scattering solutions with expansions on sets of appropriate functions having closed form. In so doing, we develop a number of related mathematical tools involving Coulomb functions, homogeneous and non-homogeneous second order differential equations, and hypergeometric functions in one and two variables. First we deal with the two-body radial Coulomb wave functions, and review their main properties. We extend known results to give in closed form the Laguerre expansions coefficients of the irregular solutions, and establish a new connection between the coefficients corresponding to the regular solution and Meixner-Pollaczek polynomials. This relation allows us to obtain an orthogonality and closure relation for these coefficients considering the charge as a variable. Then we explore two-variable hypergeometric functions. For some of them, such as Appell and confluent Horn functions, we find closed form for the derivatives with respect to their parameters. We also study a particular set of two-body Generalized Sturmian functions constructed with a Hulth´en generating potential. Contrary to the usual case in which Sturmian functions are numerically constructed, the Hulth´en Sturmian functions can be given in closed form. Their mathematical properties can thus be analytically studied providing a unique tool to investigate scattering problems. Next, we introduce a novel set of functions that we name Quasi-Sturmian functions. They constitute an alternative set of functions, given in closed form, to expand the sought after solution of two- and three-body scattering processes. Quasi-Sturmian functions are solutions of a non-homogeneous second order Schr¨odinger-like differential equation and have, by construction, the appropriate asymptotic behavior. We present different analytic expressions and explore their mathematical properties, linking and justifying the developed mathematical tools described above. Finally we use the studied Hulth´en Sturmian and Quasi-Sturmian functions to solve some particular two- and three-body scattering problems. The efficiency of these sets of functions is illustrated by comparing our results with those obtained by other methods
Fil: Del Punta, Jessica A.. Universidad Nacional del Sur. Departamento de Física; Argentina
Materia
Física
Three-body problem
Sturmian functions
Hypergeometric functions
Coulomb problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/3394

id RID-UNS_f26a88c3ff7ddc28cbc658c34ead3c6b
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/3394
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Mathematical methods in atomic physics = Métodos matemáticos en física atómicaDel Punta, Jessica A.FísicaThree-body problemSturmian functionsHypergeometric functionsCoulomb problemsLos problemas de dispersión de partículas, como son los de dos y tres cuerpos, tienen una relevancia crucial en física atómica, pues permiten describir diversos procesos de colisiones. Hoy en día, los casos de dos cuerpos pueden ser resueltos con el grado de precisión numérica que se desee. Los problemas de dispersión de tres partículas cargadas son notoriamente más difíciles pero aún así algo similar, aunque en menor medida, puede establecerse. El objetivo de este trabajo es contribuir a la comprensión de procesos Coulombianos de dispersión de tres cuerpos desde un punto de vista analítico. Esto no solo es de fundamental interés, sino que también es útil para dominar mejor los enfoques numéricos que se actualmente se desarrollan dentro de la comunidad de colisiones atómicas. Para lograr este objetivo, proponemos aproximar la solución del problema con desarrollos en series de funciones adecuadas y expresables analíticamente. Al hacer esto, desarrollamos una serie de herramientas matemáticas relacionadas con funciones Coulombianas, ecuaciones diferenciales de segundo orden homogéneas y no homogéneas, y funciones hipergeométricas en una y dos variables. En primer lugar, trabajamos con las funciones de onda Coulombianas radiales y revisamos sus principales propiedades. Así, extendemos los resultados conocidos para dar expresiones analíticas de los coeficientes asociados al desarrollo, en serie de funciones de tipo Laguerre, de las funciones Coulombianas irregulares. También establecemos una nueva conexión entre los coeficientes asociados al desarrollo de la función Coulombiana regular y los polinomios de Meixner-Pollaczek. Esta relación nos permite deducir propiedades de ortogonalidad y clausura para estos coeficientes al considerar la carga como variable. Luego, estudiamos las funciones hipergeométricas de dos variables. Para algunas de ellas, como las funciones de Appell o las confluentes de Horn, presentamos expresiones analíticas de sus derivadas respecto de sus parámetros. También estudiamos un conjunto particular de funciones Sturmianas Generalizadas de dos cuerpos construidas considerando como potencial generador el potencial de Hulthén. Contrariamente al caso habitual, en el que las funciones Sturmianas se construyen numéricamente, las funciones Sturmianas de Hulthén poseen forma analítica. Sus propiedades matem´aticas pueden ser analíticamente estudiadas proporcionando una herramienta única para comprender y analizar los problemas de dispersión y sus soluciones. Además, proponemos un nuevo conjunto de funciones a las que llamamos funciones Quasi-Sturmianas. Estas funciones se presentan como una alternativa para expandir la solución buscada en procesos de dispersi´on de dos y tres cuerpos. Se definen como soluciones de una ecuación diferencial de tipo-Schrödinger, no homogénea. Por construcción, incluyen un comportamiento asintótico adecuado para resolver problemas de dispersión. Presentamos diferentes expresiones analíticas y exploramos sus propiedades matemáticas, vinculando y justificando los desarrollos realizados previamente. Para finalizar, utilizamos las funciones estudiadas (Sturmianas de Hulthén y Quasi-Sturmianas) en la resolución de problemas particulares de dos y tres cuerpos. La eficacia de estas funciones se ilustra comparando los resultados obtenidos con datos provenientes de la aplicación de otras metodologías.Two and three-body scattering problems are of crucial relevance in atomic physics as they allow to describe different atomic collision processes. Nowadays, the two-body cases can be solved with any degree of numerical accuracy. Scattering problem involving three charged particles are notoriously difficult but something similar –though to a lesser extentcan be stated. The aim of this work is to contribute to the understanding of three-body Coulomb scattering problems from an analytical point of view. This is not only of fundamental interest, it is also useful to better master numerical approaches that are being developed within the collision community. To achieve this aim we propose to approximate scattering solutions with expansions on sets of appropriate functions having closed form. In so doing, we develop a number of related mathematical tools involving Coulomb functions, homogeneous and non-homogeneous second order differential equations, and hypergeometric functions in one and two variables. First we deal with the two-body radial Coulomb wave functions, and review their main properties. We extend known results to give in closed form the Laguerre expansions coefficients of the irregular solutions, and establish a new connection between the coefficients corresponding to the regular solution and Meixner-Pollaczek polynomials. This relation allows us to obtain an orthogonality and closure relation for these coefficients considering the charge as a variable. Then we explore two-variable hypergeometric functions. For some of them, such as Appell and confluent Horn functions, we find closed form for the derivatives with respect to their parameters. We also study a particular set of two-body Generalized Sturmian functions constructed with a Hulth´en generating potential. Contrary to the usual case in which Sturmian functions are numerically constructed, the Hulth´en Sturmian functions can be given in closed form. Their mathematical properties can thus be analytically studied providing a unique tool to investigate scattering problems. Next, we introduce a novel set of functions that we name Quasi-Sturmian functions. They constitute an alternative set of functions, given in closed form, to expand the sought after solution of two- and three-body scattering processes. Quasi-Sturmian functions are solutions of a non-homogeneous second order Schr¨odinger-like differential equation and have, by construction, the appropriate asymptotic behavior. We present different analytic expressions and explore their mathematical properties, linking and justifying the developed mathematical tools described above. Finally we use the studied Hulth´en Sturmian and Quasi-Sturmian functions to solve some particular two- and three-body scattering problems. The efficiency of these sets of functions is illustrated by comparing our results with those obtained by other methodsFil: Del Punta, Jessica A.. Universidad Nacional del Sur. Departamento de Física; ArgentinaGasaneo, GustavoAncarani, Lorenzo Ugo2017-03-17info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/3394enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-10-16T09:29:12Zoai:repositorio.bc.uns.edu.ar:123456789/3394instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-10-16 09:29:12.707Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Mathematical methods in atomic physics = Métodos matemáticos en física atómica
title Mathematical methods in atomic physics = Métodos matemáticos en física atómica
spellingShingle Mathematical methods in atomic physics = Métodos matemáticos en física atómica
Del Punta, Jessica A.
Física
Three-body problem
Sturmian functions
Hypergeometric functions
Coulomb problems
title_short Mathematical methods in atomic physics = Métodos matemáticos en física atómica
title_full Mathematical methods in atomic physics = Métodos matemáticos en física atómica
title_fullStr Mathematical methods in atomic physics = Métodos matemáticos en física atómica
title_full_unstemmed Mathematical methods in atomic physics = Métodos matemáticos en física atómica
title_sort Mathematical methods in atomic physics = Métodos matemáticos en física atómica
dc.creator.none.fl_str_mv Del Punta, Jessica A.
author Del Punta, Jessica A.
author_facet Del Punta, Jessica A.
author_role author
dc.contributor.none.fl_str_mv Gasaneo, Gustavo
Ancarani, Lorenzo Ugo
dc.subject.none.fl_str_mv Física
Three-body problem
Sturmian functions
Hypergeometric functions
Coulomb problems
topic Física
Three-body problem
Sturmian functions
Hypergeometric functions
Coulomb problems
dc.description.none.fl_txt_mv Los problemas de dispersión de partículas, como son los de dos y tres cuerpos, tienen una relevancia crucial en física atómica, pues permiten describir diversos procesos de colisiones. Hoy en día, los casos de dos cuerpos pueden ser resueltos con el grado de precisión numérica que se desee. Los problemas de dispersión de tres partículas cargadas son notoriamente más difíciles pero aún así algo similar, aunque en menor medida, puede establecerse. El objetivo de este trabajo es contribuir a la comprensión de procesos Coulombianos de dispersión de tres cuerpos desde un punto de vista analítico. Esto no solo es de fundamental interés, sino que también es útil para dominar mejor los enfoques numéricos que se actualmente se desarrollan dentro de la comunidad de colisiones atómicas. Para lograr este objetivo, proponemos aproximar la solución del problema con desarrollos en series de funciones adecuadas y expresables analíticamente. Al hacer esto, desarrollamos una serie de herramientas matemáticas relacionadas con funciones Coulombianas, ecuaciones diferenciales de segundo orden homogéneas y no homogéneas, y funciones hipergeométricas en una y dos variables. En primer lugar, trabajamos con las funciones de onda Coulombianas radiales y revisamos sus principales propiedades. Así, extendemos los resultados conocidos para dar expresiones analíticas de los coeficientes asociados al desarrollo, en serie de funciones de tipo Laguerre, de las funciones Coulombianas irregulares. También establecemos una nueva conexión entre los coeficientes asociados al desarrollo de la función Coulombiana regular y los polinomios de Meixner-Pollaczek. Esta relación nos permite deducir propiedades de ortogonalidad y clausura para estos coeficientes al considerar la carga como variable. Luego, estudiamos las funciones hipergeométricas de dos variables. Para algunas de ellas, como las funciones de Appell o las confluentes de Horn, presentamos expresiones analíticas de sus derivadas respecto de sus parámetros. También estudiamos un conjunto particular de funciones Sturmianas Generalizadas de dos cuerpos construidas considerando como potencial generador el potencial de Hulthén. Contrariamente al caso habitual, en el que las funciones Sturmianas se construyen numéricamente, las funciones Sturmianas de Hulthén poseen forma analítica. Sus propiedades matem´aticas pueden ser analíticamente estudiadas proporcionando una herramienta única para comprender y analizar los problemas de dispersión y sus soluciones. Además, proponemos un nuevo conjunto de funciones a las que llamamos funciones Quasi-Sturmianas. Estas funciones se presentan como una alternativa para expandir la solución buscada en procesos de dispersi´on de dos y tres cuerpos. Se definen como soluciones de una ecuación diferencial de tipo-Schrödinger, no homogénea. Por construcción, incluyen un comportamiento asintótico adecuado para resolver problemas de dispersión. Presentamos diferentes expresiones analíticas y exploramos sus propiedades matemáticas, vinculando y justificando los desarrollos realizados previamente. Para finalizar, utilizamos las funciones estudiadas (Sturmianas de Hulthén y Quasi-Sturmianas) en la resolución de problemas particulares de dos y tres cuerpos. La eficacia de estas funciones se ilustra comparando los resultados obtenidos con datos provenientes de la aplicación de otras metodologías.
Two and three-body scattering problems are of crucial relevance in atomic physics as they allow to describe different atomic collision processes. Nowadays, the two-body cases can be solved with any degree of numerical accuracy. Scattering problem involving three charged particles are notoriously difficult but something similar –though to a lesser extentcan be stated. The aim of this work is to contribute to the understanding of three-body Coulomb scattering problems from an analytical point of view. This is not only of fundamental interest, it is also useful to better master numerical approaches that are being developed within the collision community. To achieve this aim we propose to approximate scattering solutions with expansions on sets of appropriate functions having closed form. In so doing, we develop a number of related mathematical tools involving Coulomb functions, homogeneous and non-homogeneous second order differential equations, and hypergeometric functions in one and two variables. First we deal with the two-body radial Coulomb wave functions, and review their main properties. We extend known results to give in closed form the Laguerre expansions coefficients of the irregular solutions, and establish a new connection between the coefficients corresponding to the regular solution and Meixner-Pollaczek polynomials. This relation allows us to obtain an orthogonality and closure relation for these coefficients considering the charge as a variable. Then we explore two-variable hypergeometric functions. For some of them, such as Appell and confluent Horn functions, we find closed form for the derivatives with respect to their parameters. We also study a particular set of two-body Generalized Sturmian functions constructed with a Hulth´en generating potential. Contrary to the usual case in which Sturmian functions are numerically constructed, the Hulth´en Sturmian functions can be given in closed form. Their mathematical properties can thus be analytically studied providing a unique tool to investigate scattering problems. Next, we introduce a novel set of functions that we name Quasi-Sturmian functions. They constitute an alternative set of functions, given in closed form, to expand the sought after solution of two- and three-body scattering processes. Quasi-Sturmian functions are solutions of a non-homogeneous second order Schr¨odinger-like differential equation and have, by construction, the appropriate asymptotic behavior. We present different analytic expressions and explore their mathematical properties, linking and justifying the developed mathematical tools described above. Finally we use the studied Hulth´en Sturmian and Quasi-Sturmian functions to solve some particular two- and three-body scattering problems. The efficiency of these sets of functions is illustrated by comparing our results with those obtained by other methods
Fil: Del Punta, Jessica A.. Universidad Nacional del Sur. Departamento de Física; Argentina
description Los problemas de dispersión de partículas, como son los de dos y tres cuerpos, tienen una relevancia crucial en física atómica, pues permiten describir diversos procesos de colisiones. Hoy en día, los casos de dos cuerpos pueden ser resueltos con el grado de precisión numérica que se desee. Los problemas de dispersión de tres partículas cargadas son notoriamente más difíciles pero aún así algo similar, aunque en menor medida, puede establecerse. El objetivo de este trabajo es contribuir a la comprensión de procesos Coulombianos de dispersión de tres cuerpos desde un punto de vista analítico. Esto no solo es de fundamental interés, sino que también es útil para dominar mejor los enfoques numéricos que se actualmente se desarrollan dentro de la comunidad de colisiones atómicas. Para lograr este objetivo, proponemos aproximar la solución del problema con desarrollos en series de funciones adecuadas y expresables analíticamente. Al hacer esto, desarrollamos una serie de herramientas matemáticas relacionadas con funciones Coulombianas, ecuaciones diferenciales de segundo orden homogéneas y no homogéneas, y funciones hipergeométricas en una y dos variables. En primer lugar, trabajamos con las funciones de onda Coulombianas radiales y revisamos sus principales propiedades. Así, extendemos los resultados conocidos para dar expresiones analíticas de los coeficientes asociados al desarrollo, en serie de funciones de tipo Laguerre, de las funciones Coulombianas irregulares. También establecemos una nueva conexión entre los coeficientes asociados al desarrollo de la función Coulombiana regular y los polinomios de Meixner-Pollaczek. Esta relación nos permite deducir propiedades de ortogonalidad y clausura para estos coeficientes al considerar la carga como variable. Luego, estudiamos las funciones hipergeométricas de dos variables. Para algunas de ellas, como las funciones de Appell o las confluentes de Horn, presentamos expresiones analíticas de sus derivadas respecto de sus parámetros. También estudiamos un conjunto particular de funciones Sturmianas Generalizadas de dos cuerpos construidas considerando como potencial generador el potencial de Hulthén. Contrariamente al caso habitual, en el que las funciones Sturmianas se construyen numéricamente, las funciones Sturmianas de Hulthén poseen forma analítica. Sus propiedades matem´aticas pueden ser analíticamente estudiadas proporcionando una herramienta única para comprender y analizar los problemas de dispersión y sus soluciones. Además, proponemos un nuevo conjunto de funciones a las que llamamos funciones Quasi-Sturmianas. Estas funciones se presentan como una alternativa para expandir la solución buscada en procesos de dispersi´on de dos y tres cuerpos. Se definen como soluciones de una ecuación diferencial de tipo-Schrödinger, no homogénea. Por construcción, incluyen un comportamiento asintótico adecuado para resolver problemas de dispersión. Presentamos diferentes expresiones analíticas y exploramos sus propiedades matemáticas, vinculando y justificando los desarrollos realizados previamente. Para finalizar, utilizamos las funciones estudiadas (Sturmianas de Hulthén y Quasi-Sturmianas) en la resolución de problemas particulares de dos y tres cuerpos. La eficacia de estas funciones se ilustra comparando los resultados obtenidos con datos provenientes de la aplicación de otras metodologías.
publishDate 2017
dc.date.none.fl_str_mv 2017-03-17
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://repositoriodigital.uns.edu.ar/handle/123456789/3394
url http://repositoriodigital.uns.edu.ar/handle/123456789/3394
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1846143108116381696
score 12.712165