Mathematical properties of generalized Sturmian functions
- Autores
- Ambrosio, Marcelo José; del Punta, Jessica Adriana; Rodriguez, Karina Viviana; Gasaneo, Gustavo; Ancarani, L. U.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study some mathematical properties of generalized Sturmian functions which are solutions of a Schrödinger-like equation supplemented by two boundary conditions. These generalized functions, for any value of the energy, are defined in terms of the magnitude of the potential. One of the boundary conditions is imposed at the origin of the coordinate, where regularity is required. The second point is at large distances. For negative energies, bound-like conditions are imposed. For positive or complex energies, incoming or outgoing boundary conditions are imposed to deal with scattering problems; in this case, since scattering conditions are complex, the Sturmian functions themselves are complex. Since all of the functions solve a SturmLiouville problem, they allow us to construct a Sturmian basis set which must be orthogonal and complete: this is the case even when they are complex. Here we study some properties of generalized Sturmian functions associated with the Hulthén potential, in particular, the spatial organization of their nodes, and demonstrate explicitly their orthogonality. We also show that the overlap matrix elements, which are generally required in scattering or bound state calculations, are well defined. Many of these mathematical properties are expressed in terms of uncommon multivariable hypergeometric functions. Finally, applications to the scattering of a particle by a Yukawa and by a Hulthén potential serve as illustrations of the efficiency of the complex HulthénSturmian basis.
Fil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: del Punta, Jessica Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Rodriguez, Karina Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Ancarani, L. U.. Université Paul Verlaine-Metz; Francia - Materia
-
Sturmian Functions
Scattering Problem
Green Operator
Atomic Collisionsions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/66531
Ver los metadatos del registro completo
id |
CONICETDig_77b9ca545d915f6b95c0f5ba1bf7d970 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/66531 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mathematical properties of generalized Sturmian functionsAmbrosio, Marcelo Josédel Punta, Jessica AdrianaRodriguez, Karina VivianaGasaneo, GustavoAncarani, L. U.Sturmian FunctionsScattering ProblemGreen OperatorAtomic Collisionsionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study some mathematical properties of generalized Sturmian functions which are solutions of a Schrödinger-like equation supplemented by two boundary conditions. These generalized functions, for any value of the energy, are defined in terms of the magnitude of the potential. One of the boundary conditions is imposed at the origin of the coordinate, where regularity is required. The second point is at large distances. For negative energies, bound-like conditions are imposed. For positive or complex energies, incoming or outgoing boundary conditions are imposed to deal with scattering problems; in this case, since scattering conditions are complex, the Sturmian functions themselves are complex. Since all of the functions solve a SturmLiouville problem, they allow us to construct a Sturmian basis set which must be orthogonal and complete: this is the case even when they are complex. Here we study some properties of generalized Sturmian functions associated with the Hulthén potential, in particular, the spatial organization of their nodes, and demonstrate explicitly their orthogonality. We also show that the overlap matrix elements, which are generally required in scattering or bound state calculations, are well defined. Many of these mathematical properties are expressed in terms of uncommon multivariable hypergeometric functions. Finally, applications to the scattering of a particle by a Yukawa and by a Hulthén potential serve as illustrations of the efficiency of the complex HulthénSturmian basis.Fil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: del Punta, Jessica Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Rodriguez, Karina Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Ancarani, L. U.. Université Paul Verlaine-Metz; FranciaIOP Publishing2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66531Ambrosio, Marcelo José; del Punta, Jessica Adriana; Rodriguez, Karina Viviana; Gasaneo, Gustavo; Ancarani, L. U.; Mathematical properties of generalized Sturmian functions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 1; 1-2012; 2-211751-81131050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/1/015201info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/45/1/015201info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:55Zoai:ri.conicet.gov.ar:11336/66531instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:55.255CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mathematical properties of generalized Sturmian functions |
title |
Mathematical properties of generalized Sturmian functions |
spellingShingle |
Mathematical properties of generalized Sturmian functions Ambrosio, Marcelo José Sturmian Functions Scattering Problem Green Operator Atomic Collisionsions |
title_short |
Mathematical properties of generalized Sturmian functions |
title_full |
Mathematical properties of generalized Sturmian functions |
title_fullStr |
Mathematical properties of generalized Sturmian functions |
title_full_unstemmed |
Mathematical properties of generalized Sturmian functions |
title_sort |
Mathematical properties of generalized Sturmian functions |
dc.creator.none.fl_str_mv |
Ambrosio, Marcelo José del Punta, Jessica Adriana Rodriguez, Karina Viviana Gasaneo, Gustavo Ancarani, L. U. |
author |
Ambrosio, Marcelo José |
author_facet |
Ambrosio, Marcelo José del Punta, Jessica Adriana Rodriguez, Karina Viviana Gasaneo, Gustavo Ancarani, L. U. |
author_role |
author |
author2 |
del Punta, Jessica Adriana Rodriguez, Karina Viviana Gasaneo, Gustavo Ancarani, L. U. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Sturmian Functions Scattering Problem Green Operator Atomic Collisionsions |
topic |
Sturmian Functions Scattering Problem Green Operator Atomic Collisionsions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study some mathematical properties of generalized Sturmian functions which are solutions of a Schrödinger-like equation supplemented by two boundary conditions. These generalized functions, for any value of the energy, are defined in terms of the magnitude of the potential. One of the boundary conditions is imposed at the origin of the coordinate, where regularity is required. The second point is at large distances. For negative energies, bound-like conditions are imposed. For positive or complex energies, incoming or outgoing boundary conditions are imposed to deal with scattering problems; in this case, since scattering conditions are complex, the Sturmian functions themselves are complex. Since all of the functions solve a SturmLiouville problem, they allow us to construct a Sturmian basis set which must be orthogonal and complete: this is the case even when they are complex. Here we study some properties of generalized Sturmian functions associated with the Hulthén potential, in particular, the spatial organization of their nodes, and demonstrate explicitly their orthogonality. We also show that the overlap matrix elements, which are generally required in scattering or bound state calculations, are well defined. Many of these mathematical properties are expressed in terms of uncommon multivariable hypergeometric functions. Finally, applications to the scattering of a particle by a Yukawa and by a Hulthén potential serve as illustrations of the efficiency of the complex HulthénSturmian basis. Fil: Ambrosio, Marcelo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: del Punta, Jessica Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Rodriguez, Karina Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Ancarani, L. U.. Université Paul Verlaine-Metz; Francia |
description |
We study some mathematical properties of generalized Sturmian functions which are solutions of a Schrödinger-like equation supplemented by two boundary conditions. These generalized functions, for any value of the energy, are defined in terms of the magnitude of the potential. One of the boundary conditions is imposed at the origin of the coordinate, where regularity is required. The second point is at large distances. For negative energies, bound-like conditions are imposed. For positive or complex energies, incoming or outgoing boundary conditions are imposed to deal with scattering problems; in this case, since scattering conditions are complex, the Sturmian functions themselves are complex. Since all of the functions solve a SturmLiouville problem, they allow us to construct a Sturmian basis set which must be orthogonal and complete: this is the case even when they are complex. Here we study some properties of generalized Sturmian functions associated with the Hulthén potential, in particular, the spatial organization of their nodes, and demonstrate explicitly their orthogonality. We also show that the overlap matrix elements, which are generally required in scattering or bound state calculations, are well defined. Many of these mathematical properties are expressed in terms of uncommon multivariable hypergeometric functions. Finally, applications to the scattering of a particle by a Yukawa and by a Hulthén potential serve as illustrations of the efficiency of the complex HulthénSturmian basis. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/66531 Ambrosio, Marcelo José; del Punta, Jessica Adriana; Rodriguez, Karina Viviana; Gasaneo, Gustavo; Ancarani, L. U.; Mathematical properties of generalized Sturmian functions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 1; 1-2012; 2-21 1751-8113 1050-2947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/66531 |
identifier_str_mv |
Ambrosio, Marcelo José; del Punta, Jessica Adriana; Rodriguez, Karina Viviana; Gasaneo, Gustavo; Ancarani, L. U.; Mathematical properties of generalized Sturmian functions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 1; 1-2012; 2-21 1751-8113 1050-2947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/1/015201 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/45/1/015201 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980298794467328 |
score |
12.993085 |