Dimensiones homológicas en teoría de representaciones de álgebras

Autores
Alarcon, Leonardo German
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Lanzilotta Mernies, Marcelo Américo
Gatica, María Andrea
Descripción
En esta tesis trabajamos los módulos periódicos, los módulos virtualmente periódicos y los módulos ortogonales a su resolución. Estudiamos las dimensiones homológicas de dichos módulos, en particular, el valor en la funciones Ø y U de Igusa-Todorov en los módulos ortogonales a su resolución. También, calculamos las dimensiones homológicas (fin.dim, Ø-dim, U-dim) de las álgebras n-ortogonales a su resolución. En primer lugar, haciendo uso de la descripción de las sizigias en las álgebras de radical cuadrado cero y en las álgebras truncadas, describimos los módulos periódicos y virtulamente periódicos en función del carcaj. Además, en el caso de las álgebras de radical cuadrado cero, caracterizamos los módulos simples virtualmente periódicos en función de su dimensión proyectiva o inyectiva. Por otro lado, mostramos que en las álgebras n-Gorenstein los módulos p-periódicos indescomponibles no proyectivos coinciden con los módulos fuertemente Gorenstein proyectivos. Estos resultados nos serán de utilidad en el resto del trabajo para construir ejemplos. En segundo lugar, definimos los módulos ortogonales a su resolución los cuales son una generalización de los módulos estables y por lo tanto, de los módulos Gorenstein proyectivos. Demostramos que los valores de las funciones Ø y U de Igusa-Todorov en los módulos ortogonales a su resolución coinciden. A partir de un módulo ortogonal a su resolución construimos una subcategoría Xx de mod Ʌ y probamos que el funtor sizigia es un funtor fiel y pleno de Xx en sí misma. Utilizando dicho funtor, mostramos que la primera función Igusa-Todorov, Ø , se anula en los módulos ortogonales a su resolución. Finalmente, utilizando los módulos ortogonales a su resolución, definimos las álgebras n-ortogonales a su resolución y demostramos que su dimensión finitista, su Ø -dimensión y su U-dimensión son finitas.
In this thesis we work with the periodic modules, virtually periodic modules and orthogonal to their resolution modules.We study homological dimensions of such modules, and particularly, the value of Igusa-Todorov's functions Ø and U at orthogonal to their resolution modules. We also compute the homological dimensions (fin.dim, Ø -dim, U-dim) of the Orthogonal to their resolution algebras. First, making use of syzygy's description for radical square zero algebras and for truncated path algebras, we describe periodic and virtually periodic modules according to the quiver. Moreover, in the case of radical square zero algebras, we characterize simple virtually periodic modules in function of their projective or injective dimension. On the other side, we show that, for n-Gorenstein algebras, non-projective indecomposable pperiodic modules coincide with the strongly projective Gorenstein modules. These results will become useful to us in the rest of the work for building examples. Second, we define orthogonal to their resolution modules, which are a generalization of stable modules and therefore, of projective Gorenstein modules. We demonstrate that the values of Igusa-Todorov's functions Ø and U in orthogonal to their resolution modules coincide. From an orthogonal to its resolution modules we build the subcategory XX of mod Ʌ and we prove that the syzygy functor is a faithful and full functor of XX over itself. Using the mentioned functor, we show that Ø , the first Igusa-Todorov's function, is nullified in orthogonal to their resolution modules. Finally, using orthogonal to their resolution modules, we dedine the n-orthogonal to their resolution algebras and we prove that its finitistic dimension, Ø -dimension and U-dimension are finite.
Fil: Alarcon, Leonardo German. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
Matemáticas
Álgebra
Álgebra homológica
Representaciones de Álgebra de Artin
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/5655

id RID-UNS_b93522a601357467be19ec51ab4b886a
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/5655
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Dimensiones homológicas en teoría de representaciones de álgebrasAlarcon, Leonardo GermanMatemáticasÁlgebraÁlgebra homológicaRepresentaciones de Álgebra de ArtinEn esta tesis trabajamos los módulos periódicos, los módulos virtualmente periódicos y los módulos ortogonales a su resolución. Estudiamos las dimensiones homológicas de dichos módulos, en particular, el valor en la funciones Ø y U de Igusa-Todorov en los módulos ortogonales a su resolución. También, calculamos las dimensiones homológicas (fin.dim, Ø-dim, U-dim) de las álgebras n-ortogonales a su resolución. En primer lugar, haciendo uso de la descripción de las sizigias en las álgebras de radical cuadrado cero y en las álgebras truncadas, describimos los módulos periódicos y virtulamente periódicos en función del carcaj. Además, en el caso de las álgebras de radical cuadrado cero, caracterizamos los módulos simples virtualmente periódicos en función de su dimensión proyectiva o inyectiva. Por otro lado, mostramos que en las álgebras n-Gorenstein los módulos p-periódicos indescomponibles no proyectivos coinciden con los módulos fuertemente Gorenstein proyectivos. Estos resultados nos serán de utilidad en el resto del trabajo para construir ejemplos. En segundo lugar, definimos los módulos ortogonales a su resolución los cuales son una generalización de los módulos estables y por lo tanto, de los módulos Gorenstein proyectivos. Demostramos que los valores de las funciones Ø y U de Igusa-Todorov en los módulos ortogonales a su resolución coinciden. A partir de un módulo ortogonal a su resolución construimos una subcategoría Xx de mod Ʌ y probamos que el funtor sizigia es un funtor fiel y pleno de Xx en sí misma. Utilizando dicho funtor, mostramos que la primera función Igusa-Todorov, Ø , se anula en los módulos ortogonales a su resolución. Finalmente, utilizando los módulos ortogonales a su resolución, definimos las álgebras n-ortogonales a su resolución y demostramos que su dimensión finitista, su Ø -dimensión y su U-dimensión son finitas.In this thesis we work with the periodic modules, virtually periodic modules and orthogonal to their resolution modules.We study homological dimensions of such modules, and particularly, the value of Igusa-Todorov's functions Ø and U at orthogonal to their resolution modules. We also compute the homological dimensions (fin.dim, Ø -dim, U-dim) of the Orthogonal to their resolution algebras. First, making use of syzygy's description for radical square zero algebras and for truncated path algebras, we describe periodic and virtually periodic modules according to the quiver. Moreover, in the case of radical square zero algebras, we characterize simple virtually periodic modules in function of their projective or injective dimension. On the other side, we show that, for n-Gorenstein algebras, non-projective indecomposable pperiodic modules coincide with the strongly projective Gorenstein modules. These results will become useful to us in the rest of the work for building examples. Second, we define orthogonal to their resolution modules, which are a generalization of stable modules and therefore, of projective Gorenstein modules. We demonstrate that the values of Igusa-Todorov's functions Ø and U in orthogonal to their resolution modules coincide. From an orthogonal to its resolution modules we build the subcategory XX of mod Ʌ and we prove that the syzygy functor is a faithful and full functor of XX over itself. Using the mentioned functor, we show that Ø , the first Igusa-Todorov's function, is nullified in orthogonal to their resolution modules. Finally, using orthogonal to their resolution modules, we dedine the n-orthogonal to their resolution algebras and we prove that its finitistic dimension, Ø -dimension and U-dimension are finite.Fil: Alarcon, Leonardo German. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaLanzilotta Mernies, Marcelo AméricoGatica, María Andrea2021-04-29info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://repositoriodigital.uns.edu.ar/handle/123456789/5655spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-29T13:42:10Zoai:repositorio.bc.uns.edu.ar:123456789/5655instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-29 13:42:11.159Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Dimensiones homológicas en teoría de representaciones de álgebras
title Dimensiones homológicas en teoría de representaciones de álgebras
spellingShingle Dimensiones homológicas en teoría de representaciones de álgebras
Alarcon, Leonardo German
Matemáticas
Álgebra
Álgebra homológica
Representaciones de Álgebra de Artin
title_short Dimensiones homológicas en teoría de representaciones de álgebras
title_full Dimensiones homológicas en teoría de representaciones de álgebras
title_fullStr Dimensiones homológicas en teoría de representaciones de álgebras
title_full_unstemmed Dimensiones homológicas en teoría de representaciones de álgebras
title_sort Dimensiones homológicas en teoría de representaciones de álgebras
dc.creator.none.fl_str_mv Alarcon, Leonardo German
author Alarcon, Leonardo German
author_facet Alarcon, Leonardo German
author_role author
dc.contributor.none.fl_str_mv Lanzilotta Mernies, Marcelo Américo
Gatica, María Andrea
dc.subject.none.fl_str_mv Matemáticas
Álgebra
Álgebra homológica
Representaciones de Álgebra de Artin
topic Matemáticas
Álgebra
Álgebra homológica
Representaciones de Álgebra de Artin
dc.description.none.fl_txt_mv En esta tesis trabajamos los módulos periódicos, los módulos virtualmente periódicos y los módulos ortogonales a su resolución. Estudiamos las dimensiones homológicas de dichos módulos, en particular, el valor en la funciones Ø y U de Igusa-Todorov en los módulos ortogonales a su resolución. También, calculamos las dimensiones homológicas (fin.dim, Ø-dim, U-dim) de las álgebras n-ortogonales a su resolución. En primer lugar, haciendo uso de la descripción de las sizigias en las álgebras de radical cuadrado cero y en las álgebras truncadas, describimos los módulos periódicos y virtulamente periódicos en función del carcaj. Además, en el caso de las álgebras de radical cuadrado cero, caracterizamos los módulos simples virtualmente periódicos en función de su dimensión proyectiva o inyectiva. Por otro lado, mostramos que en las álgebras n-Gorenstein los módulos p-periódicos indescomponibles no proyectivos coinciden con los módulos fuertemente Gorenstein proyectivos. Estos resultados nos serán de utilidad en el resto del trabajo para construir ejemplos. En segundo lugar, definimos los módulos ortogonales a su resolución los cuales son una generalización de los módulos estables y por lo tanto, de los módulos Gorenstein proyectivos. Demostramos que los valores de las funciones Ø y U de Igusa-Todorov en los módulos ortogonales a su resolución coinciden. A partir de un módulo ortogonal a su resolución construimos una subcategoría Xx de mod Ʌ y probamos que el funtor sizigia es un funtor fiel y pleno de Xx en sí misma. Utilizando dicho funtor, mostramos que la primera función Igusa-Todorov, Ø , se anula en los módulos ortogonales a su resolución. Finalmente, utilizando los módulos ortogonales a su resolución, definimos las álgebras n-ortogonales a su resolución y demostramos que su dimensión finitista, su Ø -dimensión y su U-dimensión son finitas.
In this thesis we work with the periodic modules, virtually periodic modules and orthogonal to their resolution modules.We study homological dimensions of such modules, and particularly, the value of Igusa-Todorov's functions Ø and U at orthogonal to their resolution modules. We also compute the homological dimensions (fin.dim, Ø -dim, U-dim) of the Orthogonal to their resolution algebras. First, making use of syzygy's description for radical square zero algebras and for truncated path algebras, we describe periodic and virtually periodic modules according to the quiver. Moreover, in the case of radical square zero algebras, we characterize simple virtually periodic modules in function of their projective or injective dimension. On the other side, we show that, for n-Gorenstein algebras, non-projective indecomposable pperiodic modules coincide with the strongly projective Gorenstein modules. These results will become useful to us in the rest of the work for building examples. Second, we define orthogonal to their resolution modules, which are a generalization of stable modules and therefore, of projective Gorenstein modules. We demonstrate that the values of Igusa-Todorov's functions Ø and U in orthogonal to their resolution modules coincide. From an orthogonal to its resolution modules we build the subcategory XX of mod Ʌ and we prove that the syzygy functor is a faithful and full functor of XX over itself. Using the mentioned functor, we show that Ø , the first Igusa-Todorov's function, is nullified in orthogonal to their resolution modules. Finally, using orthogonal to their resolution modules, we dedine the n-orthogonal to their resolution algebras and we prove that its finitistic dimension, Ø -dimension and U-dimension are finite.
Fil: Alarcon, Leonardo German. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description En esta tesis trabajamos los módulos periódicos, los módulos virtualmente periódicos y los módulos ortogonales a su resolución. Estudiamos las dimensiones homológicas de dichos módulos, en particular, el valor en la funciones Ø y U de Igusa-Todorov en los módulos ortogonales a su resolución. También, calculamos las dimensiones homológicas (fin.dim, Ø-dim, U-dim) de las álgebras n-ortogonales a su resolución. En primer lugar, haciendo uso de la descripción de las sizigias en las álgebras de radical cuadrado cero y en las álgebras truncadas, describimos los módulos periódicos y virtulamente periódicos en función del carcaj. Además, en el caso de las álgebras de radical cuadrado cero, caracterizamos los módulos simples virtualmente periódicos en función de su dimensión proyectiva o inyectiva. Por otro lado, mostramos que en las álgebras n-Gorenstein los módulos p-periódicos indescomponibles no proyectivos coinciden con los módulos fuertemente Gorenstein proyectivos. Estos resultados nos serán de utilidad en el resto del trabajo para construir ejemplos. En segundo lugar, definimos los módulos ortogonales a su resolución los cuales son una generalización de los módulos estables y por lo tanto, de los módulos Gorenstein proyectivos. Demostramos que los valores de las funciones Ø y U de Igusa-Todorov en los módulos ortogonales a su resolución coinciden. A partir de un módulo ortogonal a su resolución construimos una subcategoría Xx de mod Ʌ y probamos que el funtor sizigia es un funtor fiel y pleno de Xx en sí misma. Utilizando dicho funtor, mostramos que la primera función Igusa-Todorov, Ø , se anula en los módulos ortogonales a su resolución. Finalmente, utilizando los módulos ortogonales a su resolución, definimos las álgebras n-ortogonales a su resolución y demostramos que su dimensión finitista, su Ø -dimensión y su U-dimensión son finitas.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-29
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv https://repositoriodigital.uns.edu.ar/handle/123456789/5655
url https://repositoriodigital.uns.edu.ar/handle/123456789/5655
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1844619086854619136
score 12.558318