Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner
- Autores
- Fernández, Elsa Adriana; Platzeck, Maria Ines
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Λ be a finite dimensional algebra over an algebraically closed field such that any oriented cycle in the ordinary quiver of Λ is zero in Λ. We describe the ordinary quiver and relations for T(Λ) = Λ ⋉ D(Λ), the trivial extension of Λ by its minimal injective cogenerator D(Λ), and also for the repetitive algebra Λ of Λ. Associated with this description we give an application of a theorem of Sheila Brenner.
Fil: Fernández, Elsa Adriana. Universidad Nacional de la Patagonia. Facultad de Ingeniería. Sede Puerto Madryn; Argentina
Fil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
Modules
Artin Algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78775
Ver los metadatos del registro completo
| id |
CONICETDig_dfe96abc85b95448e39ff049cfad4016 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78775 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila BrennerFernández, Elsa AdrianaPlatzeck, Maria InesModulesArtin Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Λ be a finite dimensional algebra over an algebraically closed field such that any oriented cycle in the ordinary quiver of Λ is zero in Λ. We describe the ordinary quiver and relations for T(Λ) = Λ ⋉ D(Λ), the trivial extension of Λ by its minimal injective cogenerator D(Λ), and also for the repetitive algebra Λ of Λ. Associated with this description we give an application of a theorem of Sheila Brenner.Fil: Fernández, Elsa Adriana. Universidad Nacional de la Patagonia. Facultad de Ingeniería. Sede Puerto Madryn; ArgentinaFil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Inc Elsevier Science2002-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78775Fernández, Elsa Adriana; Platzeck, Maria Ines; Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner; Academic Press Inc Elsevier Science; Journal of Algebra; 249; 2; 15-3-2002; 326-3440021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869301990568info:eu-repo/semantics/altIdentifier/doi/10.1006/jabr.2001.9056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:30:48Zoai:ri.conicet.gov.ar:11336/78775instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:30:49.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner |
| title |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner |
| spellingShingle |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner Fernández, Elsa Adriana Modules Artin Algebras |
| title_short |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner |
| title_full |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner |
| title_fullStr |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner |
| title_full_unstemmed |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner |
| title_sort |
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner |
| dc.creator.none.fl_str_mv |
Fernández, Elsa Adriana Platzeck, Maria Ines |
| author |
Fernández, Elsa Adriana |
| author_facet |
Fernández, Elsa Adriana Platzeck, Maria Ines |
| author_role |
author |
| author2 |
Platzeck, Maria Ines |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Modules Artin Algebras |
| topic |
Modules Artin Algebras |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let Λ be a finite dimensional algebra over an algebraically closed field such that any oriented cycle in the ordinary quiver of Λ is zero in Λ. We describe the ordinary quiver and relations for T(Λ) = Λ ⋉ D(Λ), the trivial extension of Λ by its minimal injective cogenerator D(Λ), and also for the repetitive algebra Λ of Λ. Associated with this description we give an application of a theorem of Sheila Brenner. Fil: Fernández, Elsa Adriana. Universidad Nacional de la Patagonia. Facultad de Ingeniería. Sede Puerto Madryn; Argentina Fil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
Let Λ be a finite dimensional algebra over an algebraically closed field such that any oriented cycle in the ordinary quiver of Λ is zero in Λ. We describe the ordinary quiver and relations for T(Λ) = Λ ⋉ D(Λ), the trivial extension of Λ by its minimal injective cogenerator D(Λ), and also for the repetitive algebra Λ of Λ. Associated with this description we give an application of a theorem of Sheila Brenner. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002-03-15 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78775 Fernández, Elsa Adriana; Platzeck, Maria Ines; Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner; Academic Press Inc Elsevier Science; Journal of Algebra; 249; 2; 15-3-2002; 326-344 0021-8693 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/78775 |
| identifier_str_mv |
Fernández, Elsa Adriana; Platzeck, Maria Ines; Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner; Academic Press Inc Elsevier Science; Journal of Algebra; 249; 2; 15-3-2002; 326-344 0021-8693 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869301990568 info:eu-repo/semantics/altIdentifier/doi/10.1006/jabr.2001.9056 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781905986387968 |
| score |
12.982451 |