Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa

Autores
Castro, María Julia
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Faraoni, María Belén
Murray, Ana Paula
Descripción
El interés en triterpenos bioactivos condujo al diseño de una serie de cuarenta y tres derivados de lupeol (1) y calenduladiol (5), aislados a partir de la especie vegetal Chuquiraga erinaceae. El triterpeno natural 5 presentó un segundo grupo hidroxilo en C-16, además del hidroxilo en C-3 y del grupo isopropenilo en el anillo E, característico de este tipo de alcoholes triterpénicos, ofreciendo una estructura novedosa para ser modificada sintéticamente. En primer lugar, se llevó a cabo la optimización de la técnica de extracción y purificación reportada anteriormente para el aislamiento de 5. La sulfatación de los alcoholes 9-12, obtenidos por modificación química del grupo isopropenilo de 5, dio lugar a los derivados sulfatados 14-17. En cambio, el análogo 18 fue preparado por epoxidación del grupo isopropenilo de calenduladiol disulfatado (8). Los triterpenos 5, 10 y 11 fueron tratados con anhídrido acético rindiendo los ésteres 19-23; el tratamiento de 5 con los correspondientes cloruros de ácido dio lugar a los ésteres 24-27. Los derivados carbonílicos 10, 30-39 fueron obtenidos por oxidación alílica y/o con el reactivo de Jones de 1 y 5. Las cetonas 30 y 33, así como el aldehído 36 fueron tratados con cloruro de hidroxilamina a fin de obtener las oximas correspondientes (40-44). Por otro lado, teniendo en cuenta que la inversión de la configuración del C-3 incrementa la actividad antituberculosa y citotóxica en los alcoholes 3a-triterpénicos, se llevó a cabo la síntesis de estos alcoholes desde sus epímeros 3B más disponibles. Se estudiaron distintos sistemas catalíticos para la reducción quimio- y estereoselectiva de la cetona 30. El sistema bimetálico PtSn0,8/SiO2 resultó ser quimioselectivo dando lugar a 45 con una estereoselectividad interesante. Finalmente, la reducción de la oxima 40 rindió una mezcla de aminas isómeras (49 y 50) la cual pudo ser separada por cromatografía. Todos los derivados obtenidos fueron evaluados frente a las enzimas acetil- y butirilcolinesterasa (ACE y BuCE). El compuesto 14, con dos grupos sulfato y un grupo isopropilo unido a C-19, mostró la inhibición más potente frente a ACE. El estudio cinético enzimático y el modelado molecular revelaron que 14 se une reversiblemente al complejo enzima-sustrato, produciendo un complejo inactivo. Por otro lado, los derivados 35 y 36 mostraron la mayor actividad y selectividad frente a BuCE, sugiriendo que la presencia de un grupo carbonilo en C-16 es fundamental para esta actividad. El estudio cinético enzimático y el modelado molecular revelaron que estos inhibidores presentan afinidad por el sitio activo de la enzima y, por lo tanto, compiten con el sustrato por el acceso al mismo. Por último, se determinó la actividad citotóxica frente a las líneas celulares de cáncer de próstata (PC-3 y LNCaP) de derivados de 1 y 5, resultando el lupeol sulfatado (13), el inhibidor más potente.
The interest in bioactive triterpenes prompted to synthesize a set of forty-three derivatives from lupeol (1) and calenduladiol (5), isolated from Chuquiraga erinaceae. Natural triterpene 5 presented a second hydroxyl group at C-16, in addition to the hydroxyl at C-3 and isopropenyl moiety in the ring E, characteristic of this type of triterpene alcohols, providing a novel structure to be modified synthetically. Optimization of the extraction and purification technique previously reported for the isolation of 5. Sulfation of alcohols 9-12, obtained by chemical modification of the isopropenyl moiety of 5, afforded sulfated derivatives 14-17. However, derivative 18 was prepared by epoxidation of the isopropenyl moiety of disulfate calenduladiol (8). Triterpenes 5, 10 and 11 were treated with acetic anhydride yielding the esters 19-23; the treatment of 5 with the corresponding acyl chlorides afforded the esters 24-27. Carbonilyc derivatives 10, 30-39 were obtained by allylic oxidation and/or with Jones reagent of 1 and 5. Ketones 30 and 33, and aldehyde 36 were treated with hydroxylamine chloride in order to obtain the corresponding oximes (40-44). Taking into account that conversion of the stereochemistry of C-3 increases the antitubercular and cytotoxic activity in the 3a-triterpenic alcohols, the synthesis of these alcohols from the most available epimers 3B was carried out. In this work different catalytic systems have been studied for the chemo- and stereoselective reduction of ketone 30. The PtSn0,8/SiO2 bimetallic system proved to be chemoselective leading 45 with an interesting stereoselectivity. Finally, the reduction of the oxime 40 yielded a mixture of isomeric amines (49 and 50), which could be separated by chromatography. All the derivatives obtained were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compound 14, with two sulfate groups and an isopropyl group attached to C-19, showed the most potent inhibition for AChE. Enzyme kinetic study and molecular modeling revealed that 14 was able to bind to the complex enzyme-substrate producing an inactive complex. On the other hand, derivatives 35 and 36, showed the highest activity and selectivity against BChE, suggesting that the presence of a carbonyl group at C-16 is essential for this activity. Enzyme kinetic study and molecular modelling revealed that these inhibitors have an affinity for the active site of the enzyme and, therefore, compete with the substrate for access to it. Finally, the cytotoxic activity was determined against cancer cell lines prostate (PC-3 and LNCaP) of derivatives 1 and 5, being sulfated lupeol (13), the most potent inhibitor.
Fil: Castro, María Julia. Universidad Nacional del Sur. Departamento de Química; Argentina
Materia
Química
Triterpenos
Lupeol
Calenduladiol
Semisíntesis
Anticolinesterasa
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/2356

id RID-UNS_74ba73f847d684ea84b57ec63e2d3403
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/2356
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Síntesis de derivados triterpénicos con potencial actividad anticolinesterasaCastro, María JuliaQuímicaTriterpenosLupeolCalenduladiolSemisíntesisAnticolinesterasaEl interés en triterpenos bioactivos condujo al diseño de una serie de cuarenta y tres derivados de lupeol (1) y calenduladiol (5), aislados a partir de la especie vegetal Chuquiraga erinaceae. El triterpeno natural 5 presentó un segundo grupo hidroxilo en C-16, además del hidroxilo en C-3 y del grupo isopropenilo en el anillo E, característico de este tipo de alcoholes triterpénicos, ofreciendo una estructura novedosa para ser modificada sintéticamente. En primer lugar, se llevó a cabo la optimización de la técnica de extracción y purificación reportada anteriormente para el aislamiento de 5. La sulfatación de los alcoholes 9-12, obtenidos por modificación química del grupo isopropenilo de 5, dio lugar a los derivados sulfatados 14-17. En cambio, el análogo 18 fue preparado por epoxidación del grupo isopropenilo de calenduladiol disulfatado (8). Los triterpenos 5, 10 y 11 fueron tratados con anhídrido acético rindiendo los ésteres 19-23; el tratamiento de 5 con los correspondientes cloruros de ácido dio lugar a los ésteres 24-27. Los derivados carbonílicos 10, 30-39 fueron obtenidos por oxidación alílica y/o con el reactivo de Jones de 1 y 5. Las cetonas 30 y 33, así como el aldehído 36 fueron tratados con cloruro de hidroxilamina a fin de obtener las oximas correspondientes (40-44). Por otro lado, teniendo en cuenta que la inversión de la configuración del C-3 incrementa la actividad antituberculosa y citotóxica en los alcoholes 3a-triterpénicos, se llevó a cabo la síntesis de estos alcoholes desde sus epímeros 3B más disponibles. Se estudiaron distintos sistemas catalíticos para la reducción quimio- y estereoselectiva de la cetona 30. El sistema bimetálico PtSn0,8/SiO2 resultó ser quimioselectivo dando lugar a 45 con una estereoselectividad interesante. Finalmente, la reducción de la oxima 40 rindió una mezcla de aminas isómeras (49 y 50) la cual pudo ser separada por cromatografía. Todos los derivados obtenidos fueron evaluados frente a las enzimas acetil- y butirilcolinesterasa (ACE y BuCE). El compuesto 14, con dos grupos sulfato y un grupo isopropilo unido a C-19, mostró la inhibición más potente frente a ACE. El estudio cinético enzimático y el modelado molecular revelaron que 14 se une reversiblemente al complejo enzima-sustrato, produciendo un complejo inactivo. Por otro lado, los derivados 35 y 36 mostraron la mayor actividad y selectividad frente a BuCE, sugiriendo que la presencia de un grupo carbonilo en C-16 es fundamental para esta actividad. El estudio cinético enzimático y el modelado molecular revelaron que estos inhibidores presentan afinidad por el sitio activo de la enzima y, por lo tanto, compiten con el sustrato por el acceso al mismo. Por último, se determinó la actividad citotóxica frente a las líneas celulares de cáncer de próstata (PC-3 y LNCaP) de derivados de 1 y 5, resultando el lupeol sulfatado (13), el inhibidor más potente.The interest in bioactive triterpenes prompted to synthesize a set of forty-three derivatives from lupeol (1) and calenduladiol (5), isolated from Chuquiraga erinaceae. Natural triterpene 5 presented a second hydroxyl group at C-16, in addition to the hydroxyl at C-3 and isopropenyl moiety in the ring E, characteristic of this type of triterpene alcohols, providing a novel structure to be modified synthetically. Optimization of the extraction and purification technique previously reported for the isolation of 5. Sulfation of alcohols 9-12, obtained by chemical modification of the isopropenyl moiety of 5, afforded sulfated derivatives 14-17. However, derivative 18 was prepared by epoxidation of the isopropenyl moiety of disulfate calenduladiol (8). Triterpenes 5, 10 and 11 were treated with acetic anhydride yielding the esters 19-23; the treatment of 5 with the corresponding acyl chlorides afforded the esters 24-27. Carbonilyc derivatives 10, 30-39 were obtained by allylic oxidation and/or with Jones reagent of 1 and 5. Ketones 30 and 33, and aldehyde 36 were treated with hydroxylamine chloride in order to obtain the corresponding oximes (40-44). Taking into account that conversion of the stereochemistry of C-3 increases the antitubercular and cytotoxic activity in the 3a-triterpenic alcohols, the synthesis of these alcohols from the most available epimers 3B was carried out. In this work different catalytic systems have been studied for the chemo- and stereoselective reduction of ketone 30. The PtSn0,8/SiO2 bimetallic system proved to be chemoselective leading 45 with an interesting stereoselectivity. Finally, the reduction of the oxime 40 yielded a mixture of isomeric amines (49 and 50), which could be separated by chromatography. All the derivatives obtained were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compound 14, with two sulfate groups and an isopropyl group attached to C-19, showed the most potent inhibition for AChE. Enzyme kinetic study and molecular modeling revealed that 14 was able to bind to the complex enzyme-substrate producing an inactive complex. On the other hand, derivatives 35 and 36, showed the highest activity and selectivity against BChE, suggesting that the presence of a carbonyl group at C-16 is essential for this activity. Enzyme kinetic study and molecular modelling revealed that these inhibitors have an affinity for the active site of the enzyme and, therefore, compete with the substrate for access to it. Finally, the cytotoxic activity was determined against cancer cell lines prostate (PC-3 and LNCaP) of derivatives 1 and 5, being sulfated lupeol (13), the most potent inhibitor.Fil: Castro, María Julia. Universidad Nacional del Sur. Departamento de Química; ArgentinaFaraoni, María BelénMurray, Ana Paula2015-03-16info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/2356spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-09-29T13:42:12Zoai:repositorio.bc.uns.edu.ar:123456789/2356instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-09-29 13:42:12.644Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa
title Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa
spellingShingle Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa
Castro, María Julia
Química
Triterpenos
Lupeol
Calenduladiol
Semisíntesis
Anticolinesterasa
title_short Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa
title_full Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa
title_fullStr Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa
title_full_unstemmed Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa
title_sort Síntesis de derivados triterpénicos con potencial actividad anticolinesterasa
dc.creator.none.fl_str_mv Castro, María Julia
author Castro, María Julia
author_facet Castro, María Julia
author_role author
dc.contributor.none.fl_str_mv Faraoni, María Belén
Murray, Ana Paula
dc.subject.none.fl_str_mv Química
Triterpenos
Lupeol
Calenduladiol
Semisíntesis
Anticolinesterasa
topic Química
Triterpenos
Lupeol
Calenduladiol
Semisíntesis
Anticolinesterasa
dc.description.none.fl_txt_mv El interés en triterpenos bioactivos condujo al diseño de una serie de cuarenta y tres derivados de lupeol (1) y calenduladiol (5), aislados a partir de la especie vegetal Chuquiraga erinaceae. El triterpeno natural 5 presentó un segundo grupo hidroxilo en C-16, además del hidroxilo en C-3 y del grupo isopropenilo en el anillo E, característico de este tipo de alcoholes triterpénicos, ofreciendo una estructura novedosa para ser modificada sintéticamente. En primer lugar, se llevó a cabo la optimización de la técnica de extracción y purificación reportada anteriormente para el aislamiento de 5. La sulfatación de los alcoholes 9-12, obtenidos por modificación química del grupo isopropenilo de 5, dio lugar a los derivados sulfatados 14-17. En cambio, el análogo 18 fue preparado por epoxidación del grupo isopropenilo de calenduladiol disulfatado (8). Los triterpenos 5, 10 y 11 fueron tratados con anhídrido acético rindiendo los ésteres 19-23; el tratamiento de 5 con los correspondientes cloruros de ácido dio lugar a los ésteres 24-27. Los derivados carbonílicos 10, 30-39 fueron obtenidos por oxidación alílica y/o con el reactivo de Jones de 1 y 5. Las cetonas 30 y 33, así como el aldehído 36 fueron tratados con cloruro de hidroxilamina a fin de obtener las oximas correspondientes (40-44). Por otro lado, teniendo en cuenta que la inversión de la configuración del C-3 incrementa la actividad antituberculosa y citotóxica en los alcoholes 3a-triterpénicos, se llevó a cabo la síntesis de estos alcoholes desde sus epímeros 3B más disponibles. Se estudiaron distintos sistemas catalíticos para la reducción quimio- y estereoselectiva de la cetona 30. El sistema bimetálico PtSn0,8/SiO2 resultó ser quimioselectivo dando lugar a 45 con una estereoselectividad interesante. Finalmente, la reducción de la oxima 40 rindió una mezcla de aminas isómeras (49 y 50) la cual pudo ser separada por cromatografía. Todos los derivados obtenidos fueron evaluados frente a las enzimas acetil- y butirilcolinesterasa (ACE y BuCE). El compuesto 14, con dos grupos sulfato y un grupo isopropilo unido a C-19, mostró la inhibición más potente frente a ACE. El estudio cinético enzimático y el modelado molecular revelaron que 14 se une reversiblemente al complejo enzima-sustrato, produciendo un complejo inactivo. Por otro lado, los derivados 35 y 36 mostraron la mayor actividad y selectividad frente a BuCE, sugiriendo que la presencia de un grupo carbonilo en C-16 es fundamental para esta actividad. El estudio cinético enzimático y el modelado molecular revelaron que estos inhibidores presentan afinidad por el sitio activo de la enzima y, por lo tanto, compiten con el sustrato por el acceso al mismo. Por último, se determinó la actividad citotóxica frente a las líneas celulares de cáncer de próstata (PC-3 y LNCaP) de derivados de 1 y 5, resultando el lupeol sulfatado (13), el inhibidor más potente.
The interest in bioactive triterpenes prompted to synthesize a set of forty-three derivatives from lupeol (1) and calenduladiol (5), isolated from Chuquiraga erinaceae. Natural triterpene 5 presented a second hydroxyl group at C-16, in addition to the hydroxyl at C-3 and isopropenyl moiety in the ring E, characteristic of this type of triterpene alcohols, providing a novel structure to be modified synthetically. Optimization of the extraction and purification technique previously reported for the isolation of 5. Sulfation of alcohols 9-12, obtained by chemical modification of the isopropenyl moiety of 5, afforded sulfated derivatives 14-17. However, derivative 18 was prepared by epoxidation of the isopropenyl moiety of disulfate calenduladiol (8). Triterpenes 5, 10 and 11 were treated with acetic anhydride yielding the esters 19-23; the treatment of 5 with the corresponding acyl chlorides afforded the esters 24-27. Carbonilyc derivatives 10, 30-39 were obtained by allylic oxidation and/or with Jones reagent of 1 and 5. Ketones 30 and 33, and aldehyde 36 were treated with hydroxylamine chloride in order to obtain the corresponding oximes (40-44). Taking into account that conversion of the stereochemistry of C-3 increases the antitubercular and cytotoxic activity in the 3a-triterpenic alcohols, the synthesis of these alcohols from the most available epimers 3B was carried out. In this work different catalytic systems have been studied for the chemo- and stereoselective reduction of ketone 30. The PtSn0,8/SiO2 bimetallic system proved to be chemoselective leading 45 with an interesting stereoselectivity. Finally, the reduction of the oxime 40 yielded a mixture of isomeric amines (49 and 50), which could be separated by chromatography. All the derivatives obtained were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compound 14, with two sulfate groups and an isopropyl group attached to C-19, showed the most potent inhibition for AChE. Enzyme kinetic study and molecular modeling revealed that 14 was able to bind to the complex enzyme-substrate producing an inactive complex. On the other hand, derivatives 35 and 36, showed the highest activity and selectivity against BChE, suggesting that the presence of a carbonyl group at C-16 is essential for this activity. Enzyme kinetic study and molecular modelling revealed that these inhibitors have an affinity for the active site of the enzyme and, therefore, compete with the substrate for access to it. Finally, the cytotoxic activity was determined against cancer cell lines prostate (PC-3 and LNCaP) of derivatives 1 and 5, being sulfated lupeol (13), the most potent inhibitor.
Fil: Castro, María Julia. Universidad Nacional del Sur. Departamento de Química; Argentina
description El interés en triterpenos bioactivos condujo al diseño de una serie de cuarenta y tres derivados de lupeol (1) y calenduladiol (5), aislados a partir de la especie vegetal Chuquiraga erinaceae. El triterpeno natural 5 presentó un segundo grupo hidroxilo en C-16, además del hidroxilo en C-3 y del grupo isopropenilo en el anillo E, característico de este tipo de alcoholes triterpénicos, ofreciendo una estructura novedosa para ser modificada sintéticamente. En primer lugar, se llevó a cabo la optimización de la técnica de extracción y purificación reportada anteriormente para el aislamiento de 5. La sulfatación de los alcoholes 9-12, obtenidos por modificación química del grupo isopropenilo de 5, dio lugar a los derivados sulfatados 14-17. En cambio, el análogo 18 fue preparado por epoxidación del grupo isopropenilo de calenduladiol disulfatado (8). Los triterpenos 5, 10 y 11 fueron tratados con anhídrido acético rindiendo los ésteres 19-23; el tratamiento de 5 con los correspondientes cloruros de ácido dio lugar a los ésteres 24-27. Los derivados carbonílicos 10, 30-39 fueron obtenidos por oxidación alílica y/o con el reactivo de Jones de 1 y 5. Las cetonas 30 y 33, así como el aldehído 36 fueron tratados con cloruro de hidroxilamina a fin de obtener las oximas correspondientes (40-44). Por otro lado, teniendo en cuenta que la inversión de la configuración del C-3 incrementa la actividad antituberculosa y citotóxica en los alcoholes 3a-triterpénicos, se llevó a cabo la síntesis de estos alcoholes desde sus epímeros 3B más disponibles. Se estudiaron distintos sistemas catalíticos para la reducción quimio- y estereoselectiva de la cetona 30. El sistema bimetálico PtSn0,8/SiO2 resultó ser quimioselectivo dando lugar a 45 con una estereoselectividad interesante. Finalmente, la reducción de la oxima 40 rindió una mezcla de aminas isómeras (49 y 50) la cual pudo ser separada por cromatografía. Todos los derivados obtenidos fueron evaluados frente a las enzimas acetil- y butirilcolinesterasa (ACE y BuCE). El compuesto 14, con dos grupos sulfato y un grupo isopropilo unido a C-19, mostró la inhibición más potente frente a ACE. El estudio cinético enzimático y el modelado molecular revelaron que 14 se une reversiblemente al complejo enzima-sustrato, produciendo un complejo inactivo. Por otro lado, los derivados 35 y 36 mostraron la mayor actividad y selectividad frente a BuCE, sugiriendo que la presencia de un grupo carbonilo en C-16 es fundamental para esta actividad. El estudio cinético enzimático y el modelado molecular revelaron que estos inhibidores presentan afinidad por el sitio activo de la enzima y, por lo tanto, compiten con el sustrato por el acceso al mismo. Por último, se determinó la actividad citotóxica frente a las líneas celulares de cáncer de próstata (PC-3 y LNCaP) de derivados de 1 y 5, resultando el lupeol sulfatado (13), el inhibidor más potente.
publishDate 2015
dc.date.none.fl_str_mv 2015-03-16
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://repositoriodigital.uns.edu.ar/handle/123456789/2356
url http://repositoriodigital.uns.edu.ar/handle/123456789/2356
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1844619087762685952
score 12.559606