A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space
- Autores
- Godoy, José Luis; Vega, Jorge Ruben; Marchetti, Jacinto Luis
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and diagnosis inmultivariate processes that exhibit collinear measurements. A typical PLS regression (PLSR) modeling strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLSdecomposition of the measurements into four terms that belongs to four different subspaces is derived. In order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped domains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the anomaly class from the observed pattern of the four component statistics with respect to their respective confidence intervals, and iii) identify the disturbed variables based on the analysis of the main variable contributions to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential application of this technique to real production systems
Fil: Godoy, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina - Materia
-
Pls
Process Monitoring
Fault Detection
Fault Diagnosis
Fault Isolation
Contribution Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8877
Ver los metadatos del registro completo
id |
CONICETDig_8d3bf21405c5c006342a1d23e0aca9ca |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8877 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement spaceGodoy, José LuisVega, Jorge RubenMarchetti, Jacinto LuisPlsProcess MonitoringFault DetectionFault DiagnosisFault IsolationContribution Analysishttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2A newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and diagnosis inmultivariate processes that exhibit collinear measurements. A typical PLS regression (PLSR) modeling strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLSdecomposition of the measurements into four terms that belongs to four different subspaces is derived. In order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped domains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the anomaly class from the observed pattern of the four component statistics with respect to their respective confidence intervals, and iii) identify the disturbed variables based on the analysis of the main variable contributions to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential application of this technique to real production systemsFil: Godoy, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaElsevier Science2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8877Godoy, José Luis; Vega, Jorge Ruben; Marchetti, Jacinto Luis; A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 128; 10-2013; 25-360169-7439enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2013.07.006info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S016974391300138Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:45Zoai:ri.conicet.gov.ar:11336/8877instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:46.083CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
spellingShingle |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space Godoy, José Luis Pls Process Monitoring Fault Detection Fault Diagnosis Fault Isolation Contribution Analysis |
title_short |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title_full |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title_fullStr |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title_full_unstemmed |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
title_sort |
A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space |
dc.creator.none.fl_str_mv |
Godoy, José Luis Vega, Jorge Ruben Marchetti, Jacinto Luis |
author |
Godoy, José Luis |
author_facet |
Godoy, José Luis Vega, Jorge Ruben Marchetti, Jacinto Luis |
author_role |
author |
author2 |
Vega, Jorge Ruben Marchetti, Jacinto Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Pls Process Monitoring Fault Detection Fault Diagnosis Fault Isolation Contribution Analysis |
topic |
Pls Process Monitoring Fault Detection Fault Diagnosis Fault Isolation Contribution Analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and diagnosis inmultivariate processes that exhibit collinear measurements. A typical PLS regression (PLSR) modeling strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLSdecomposition of the measurements into four terms that belongs to four different subspaces is derived. In order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped domains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the anomaly class from the observed pattern of the four component statistics with respect to their respective confidence intervals, and iii) identify the disturbed variables based on the analysis of the main variable contributions to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential application of this technique to real production systems Fil: Godoy, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina |
description |
A newstatisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and diagnosis inmultivariate processes that exhibit collinear measurements. A typical PLS regression (PLSR) modeling strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLSdecomposition of the measurements into four terms that belongs to four different subspaces is derived. In order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped domains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the anomaly class from the observed pattern of the four component statistics with respect to their respective confidence intervals, and iii) identify the disturbed variables based on the analysis of the main variable contributions to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential application of this technique to real production systems |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8877 Godoy, José Luis; Vega, Jorge Ruben; Marchetti, Jacinto Luis; A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 128; 10-2013; 25-36 0169-7439 |
url |
http://hdl.handle.net/11336/8877 |
identifier_str_mv |
Godoy, José Luis; Vega, Jorge Ruben; Marchetti, Jacinto Luis; A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 128; 10-2013; 25-36 0169-7439 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2013.07.006 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S016974391300138X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613346528067584 |
score |
13.070432 |