Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediat...

Autores
Conde Molina, Débora; Liporace, Franco; Quevedo, Carla
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Contaminated sites with petroleum compounds are frequently observed, requiring the development of innovative technologies for its remediation. The problem is caused due to the widespread usage of petroleum-based products. Their discharge and accidental spillage in the environment prove to be hazardous both to the surroundings and life forms. Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. It is a non-invasive and cost-effective technique that relies on natural decontamination using microbes of isolated strains from contaminated areas for the clean-up of these petroleum hydrocarbons. The Zárate-Campana industrial center, located in Buenos Aires, represents one of the most important petrochemical areas in Argentina, with several companies carrying out petrochemical activities. In this study, we have investigated the ability of microorganisms to degrade these hydrocarbons. Samples were collected in the surroundings of the Campana area and screened for hydrocarbon degrading bacteria. 4 of the 13 strains previously isolated from contaminated sites were screened and identified as Pseudomonas sp, Cellulosimicrobium sp and Ochrobactrum sp. A new approach using MT1A3, belonging to Pseudomonas genus in petroleum biodegradation from the use of different carbon and nitrogen sources, was proposed to provide maximum biomass production and was evaluated for its degradation characteristics. MT1A3 grew in all carbon sources tested and was able to grow in a hydrocarbon mixture obtaining 1.79 g/L of biomass production at 25 ºC after 7 days. When comparing the use of different low-cost agro-industrial co-products as an alternative carbon source, the biomass production was significantly higher in crude peanut oil in comparison to all other substrates (p < 0.05), thus resulting in a biomass of 7.29 g/L. The most efficient nitrogen source for obtaining biomass from MT1A3 was NaNO3. Based on these results, the effectiveness was evaluated by monitoring total hydrocarbons (THs) and n-alkanes degradation as well as changes in bacterial population of natural attenuation, biostimulation and bioaugmentation treatments in microcosm design over a 120-day period. The best treatment, which involved bioaugmentation (MT1A3) and biostimulation strategies, showed a degradation of 40.05 % of total hydrocarbons with respect to the natural attenuation treatment used as control. The highest concentration of THAB and HDB was recorded, reaching a value of 2,17x1010 CFU and 8,91x106 UFC respectively.
Fil: Universidad Tecnológica Nacional. Facultad Regional Delta
Peer Reviewed
Materia
UTN
FRD
Biorremediación
Suelos contaminados
Hidrocarburos
Microcosmos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Abierto (UTN)
Institución
Universidad Tecnológica Nacional
OAI Identificador
oai:ria.utn.edu.ar:20.500.12272/3926

id RIAUTN_53eed3e63eab219035ce71c0ffa4853e
oai_identifier_str oai:ria.utn.edu.ar:20.500.12272/3926
network_acronym_str RIAUTN
repository_id_str a
network_name_str Repositorio Institucional Abierto (UTN)
spelling Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.Conde Molina, DéboraLiporace, FrancoQuevedo, CarlaUTNFRDBiorremediaciónSuelos contaminadosHidrocarburosMicrocosmosContaminated sites with petroleum compounds are frequently observed, requiring the development of innovative technologies for its remediation. The problem is caused due to the widespread usage of petroleum-based products. Their discharge and accidental spillage in the environment prove to be hazardous both to the surroundings and life forms. Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. It is a non-invasive and cost-effective technique that relies on natural decontamination using microbes of isolated strains from contaminated areas for the clean-up of these petroleum hydrocarbons. The Zárate-Campana industrial center, located in Buenos Aires, represents one of the most important petrochemical areas in Argentina, with several companies carrying out petrochemical activities. In this study, we have investigated the ability of microorganisms to degrade these hydrocarbons. Samples were collected in the surroundings of the Campana area and screened for hydrocarbon degrading bacteria. 4 of the 13 strains previously isolated from contaminated sites were screened and identified as Pseudomonas sp, Cellulosimicrobium sp and Ochrobactrum sp. A new approach using MT1A3, belonging to Pseudomonas genus in petroleum biodegradation from the use of different carbon and nitrogen sources, was proposed to provide maximum biomass production and was evaluated for its degradation characteristics. MT1A3 grew in all carbon sources tested and was able to grow in a hydrocarbon mixture obtaining 1.79 g/L of biomass production at 25 ºC after 7 days. When comparing the use of different low-cost agro-industrial co-products as an alternative carbon source, the biomass production was significantly higher in crude peanut oil in comparison to all other substrates (p < 0.05), thus resulting in a biomass of 7.29 g/L. The most efficient nitrogen source for obtaining biomass from MT1A3 was NaNO3. Based on these results, the effectiveness was evaluated by monitoring total hydrocarbons (THs) and n-alkanes degradation as well as changes in bacterial population of natural attenuation, biostimulation and bioaugmentation treatments in microcosm design over a 120-day period. The best treatment, which involved bioaugmentation (MT1A3) and biostimulation strategies, showed a degradation of 40.05 % of total hydrocarbons with respect to the natural attenuation treatment used as control. The highest concentration of THAB and HDB was recorded, reaching a value of 2,17x1010 CFU and 8,91x106 UFC respectively.Fil: Universidad Tecnológica Nacional. Facultad Regional DeltaPeer Reviewed2019-08-26T23:36:09Z2019-08-26T23:36:09Z2019-07-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdf2525-8761http://hdl.handle.net/20.500.12272/392610.34117engenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/El autorAtribución (BY)Attribution-NonCommercial-NoDerivatives 4.0 Internacionalreponame:Repositorio Institucional Abierto (UTN)instname:Universidad Tecnológica Nacional2025-09-04T11:14:41Zoai:ria.utn.edu.ar:20.500.12272/3926instacron:UTNInstitucionalhttp://ria.utn.edu.ar/Universidad públicaNo correspondehttp://ria.utn.edu.ar/oaigestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:a2025-09-04 11:14:41.59Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacionalfalse
dc.title.none.fl_str_mv Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.
title Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.
spellingShingle Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.
Conde Molina, Débora
UTN
FRD
Biorremediación
Suelos contaminados
Hidrocarburos
Microcosmos
title_short Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.
title_full Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.
title_fullStr Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.
title_full_unstemmed Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.
title_sort Development of bioremediation strategies based on the improvement of biomass production from isolated strains in hydrocarbon contaminated soils and their application in bioremediation technologies.
dc.creator.none.fl_str_mv Conde Molina, Débora
Liporace, Franco
Quevedo, Carla
author Conde Molina, Débora
author_facet Conde Molina, Débora
Liporace, Franco
Quevedo, Carla
author_role author
author2 Liporace, Franco
Quevedo, Carla
author2_role author
author
dc.subject.none.fl_str_mv UTN
FRD
Biorremediación
Suelos contaminados
Hidrocarburos
Microcosmos
topic UTN
FRD
Biorremediación
Suelos contaminados
Hidrocarburos
Microcosmos
dc.description.none.fl_txt_mv Contaminated sites with petroleum compounds are frequently observed, requiring the development of innovative technologies for its remediation. The problem is caused due to the widespread usage of petroleum-based products. Their discharge and accidental spillage in the environment prove to be hazardous both to the surroundings and life forms. Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. It is a non-invasive and cost-effective technique that relies on natural decontamination using microbes of isolated strains from contaminated areas for the clean-up of these petroleum hydrocarbons. The Zárate-Campana industrial center, located in Buenos Aires, represents one of the most important petrochemical areas in Argentina, with several companies carrying out petrochemical activities. In this study, we have investigated the ability of microorganisms to degrade these hydrocarbons. Samples were collected in the surroundings of the Campana area and screened for hydrocarbon degrading bacteria. 4 of the 13 strains previously isolated from contaminated sites were screened and identified as Pseudomonas sp, Cellulosimicrobium sp and Ochrobactrum sp. A new approach using MT1A3, belonging to Pseudomonas genus in petroleum biodegradation from the use of different carbon and nitrogen sources, was proposed to provide maximum biomass production and was evaluated for its degradation characteristics. MT1A3 grew in all carbon sources tested and was able to grow in a hydrocarbon mixture obtaining 1.79 g/L of biomass production at 25 ºC after 7 days. When comparing the use of different low-cost agro-industrial co-products as an alternative carbon source, the biomass production was significantly higher in crude peanut oil in comparison to all other substrates (p < 0.05), thus resulting in a biomass of 7.29 g/L. The most efficient nitrogen source for obtaining biomass from MT1A3 was NaNO3. Based on these results, the effectiveness was evaluated by monitoring total hydrocarbons (THs) and n-alkanes degradation as well as changes in bacterial population of natural attenuation, biostimulation and bioaugmentation treatments in microcosm design over a 120-day period. The best treatment, which involved bioaugmentation (MT1A3) and biostimulation strategies, showed a degradation of 40.05 % of total hydrocarbons with respect to the natural attenuation treatment used as control. The highest concentration of THAB and HDB was recorded, reaching a value of 2,17x1010 CFU and 8,91x106 UFC respectively.
Fil: Universidad Tecnológica Nacional. Facultad Regional Delta
Peer Reviewed
description Contaminated sites with petroleum compounds are frequently observed, requiring the development of innovative technologies for its remediation. The problem is caused due to the widespread usage of petroleum-based products. Their discharge and accidental spillage in the environment prove to be hazardous both to the surroundings and life forms. Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. It is a non-invasive and cost-effective technique that relies on natural decontamination using microbes of isolated strains from contaminated areas for the clean-up of these petroleum hydrocarbons. The Zárate-Campana industrial center, located in Buenos Aires, represents one of the most important petrochemical areas in Argentina, with several companies carrying out petrochemical activities. In this study, we have investigated the ability of microorganisms to degrade these hydrocarbons. Samples were collected in the surroundings of the Campana area and screened for hydrocarbon degrading bacteria. 4 of the 13 strains previously isolated from contaminated sites were screened and identified as Pseudomonas sp, Cellulosimicrobium sp and Ochrobactrum sp. A new approach using MT1A3, belonging to Pseudomonas genus in petroleum biodegradation from the use of different carbon and nitrogen sources, was proposed to provide maximum biomass production and was evaluated for its degradation characteristics. MT1A3 grew in all carbon sources tested and was able to grow in a hydrocarbon mixture obtaining 1.79 g/L of biomass production at 25 ºC after 7 days. When comparing the use of different low-cost agro-industrial co-products as an alternative carbon source, the biomass production was significantly higher in crude peanut oil in comparison to all other substrates (p < 0.05), thus resulting in a biomass of 7.29 g/L. The most efficient nitrogen source for obtaining biomass from MT1A3 was NaNO3. Based on these results, the effectiveness was evaluated by monitoring total hydrocarbons (THs) and n-alkanes degradation as well as changes in bacterial population of natural attenuation, biostimulation and bioaugmentation treatments in microcosm design over a 120-day period. The best treatment, which involved bioaugmentation (MT1A3) and biostimulation strategies, showed a degradation of 40.05 % of total hydrocarbons with respect to the natural attenuation treatment used as control. The highest concentration of THAB and HDB was recorded, reaching a value of 2,17x1010 CFU and 8,91x106 UFC respectively.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-26T23:36:09Z
2019-08-26T23:36:09Z
2019-07-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv 2525-8761
http://hdl.handle.net/20.500.12272/3926
10.34117
identifier_str_mv 2525-8761
10.34117
url http://hdl.handle.net/20.500.12272/3926
dc.language.none.fl_str_mv eng
eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
El autor
Atribución (BY)
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
El autor
Atribución (BY)
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Abierto (UTN)
instname:Universidad Tecnológica Nacional
reponame_str Repositorio Institucional Abierto (UTN)
collection Repositorio Institucional Abierto (UTN)
instname_str Universidad Tecnológica Nacional
repository.name.fl_str_mv Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacional
repository.mail.fl_str_mv gestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.ar
_version_ 1842344357259116544
score 12.623145