Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set]
- Autores
- Matuk Herrera, Rosana; Del Gobbo, Julián
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- conjunto de datos
- Estado
- versión aceptada
- Descripción
- Fil: Matuk Herrera, Rosana. Departamento de Ciencias Básicas. Universidad Nacional de Luján; Argentina
"Unconstrained Text Detection in Manga: a New Dataset and Baseline". It contains 450 images with the text segmentation of images from Manga109 dataset (need to request access to this dataset in order to view original manga image). Pre-processed version of the images is how they were saved straight out of GIMP. These were later processed before using for training. Post-processed version of the images is after automatically removing small connected components and filling small holes. They are also slightly bigger in width/height in order to be multiples of 8. The text is split in 2 colors: black and pink. Text in black represents text we consider easy to recognize, which is mostly when inside a speech bubble. Text in pink represents text we consider harder to detect, such as text in covers, sound effects or text outside speech bubbles. Further details can be found in our paper. - Materia
-
Manga
Dataset
Segmentation
Dataset - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de Luján
- OAI Identificador
- oai:ri.unlu.edu.ar:rediunlu/1744
Ver los metadatos del registro completo
id |
REDIUNLU_4126119ca2f75f11ff4a1c2bd2aec424 |
---|---|
oai_identifier_str |
oai:ri.unlu.edu.ar:rediunlu/1744 |
network_acronym_str |
REDIUNLU |
repository_id_str |
w |
network_name_str |
REDIUNLU (UNLu) |
spelling |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set]Matuk Herrera, RosanaDel Gobbo, JuliánMangaDatasetSegmentationhttps://purl.org/becyt/ford/1.2DatasetFil: Matuk Herrera, Rosana. Departamento de Ciencias Básicas. Universidad Nacional de Luján; Argentina"Unconstrained Text Detection in Manga: a New Dataset and Baseline". It contains 450 images with the text segmentation of images from Manga109 dataset (need to request access to this dataset in order to view original manga image). Pre-processed version of the images is how they were saved straight out of GIMP. These were later processed before using for training. Post-processed version of the images is after automatically removing small connected components and filling small holes. They are also slightly bigger in width/height in order to be multiples of 8. The text is split in 2 colors: black and pink. Text in black represents text we consider easy to recognize, which is mostly when inside a speech bubble. Text in pink represents text we consider harder to detect, such as text in covers, sound effects or text outside speech bubbles. Further details can be found in our paper.ECCV 2020: Computer Vision2023-04-27T17:40:23Z2023-04-27T17:40:23Z2021Datasetinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_ddb1info:ar-repo/semantics/conjuntoDeDatosinfo:eu-repo/semantics/dataSetapplication/zipapplication/octet-streamapplication/octet-streamhttps://doi.org/10.5281/zenodo.4511796http://ri.unlu.edu.ar/xmlui/handle/rediunlu/1744engeninfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:REDIUNLU (UNLu)instname:Universidad Nacional de Luján2025-09-29T14:29:52Zoai:ri.unlu.edu.ar:rediunlu/1744instacron:UNLuInstitucionalhttps://ri.unlu.edu.arUniversidad públicaNo correspondehttps://ri.unlu.edu.ar/oaivcano@unlu.edu.ar;fgutierrez@mail.unlu.edu.ar;faquilinogutierrez@gmail.com ArgentinaNo correspondeNo correspondeNo correspondeopendoar:w2025-09-29 14:29:52.88REDIUNLU (UNLu) - Universidad Nacional de Lujánfalse |
dc.title.none.fl_str_mv |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set] |
title |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set] |
spellingShingle |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set] Matuk Herrera, Rosana Manga Dataset Segmentation Dataset |
title_short |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set] |
title_full |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set] |
title_fullStr |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set] |
title_full_unstemmed |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set] |
title_sort |
Unconstrained Text Detection in Manga: a New Dataset and Baseline [Data set] |
dc.creator.none.fl_str_mv |
Matuk Herrera, Rosana Del Gobbo, Julián |
author |
Matuk Herrera, Rosana |
author_facet |
Matuk Herrera, Rosana Del Gobbo, Julián |
author_role |
author |
author2 |
Del Gobbo, Julián |
author2_role |
author |
dc.subject.none.fl_str_mv |
Manga Dataset Segmentation Dataset |
topic |
Manga Dataset Segmentation Dataset |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 |
dc.description.none.fl_txt_mv |
Fil: Matuk Herrera, Rosana. Departamento de Ciencias Básicas. Universidad Nacional de Luján; Argentina "Unconstrained Text Detection in Manga: a New Dataset and Baseline". It contains 450 images with the text segmentation of images from Manga109 dataset (need to request access to this dataset in order to view original manga image). Pre-processed version of the images is how they were saved straight out of GIMP. These were later processed before using for training. Post-processed version of the images is after automatically removing small connected components and filling small holes. They are also slightly bigger in width/height in order to be multiples of 8. The text is split in 2 colors: black and pink. Text in black represents text we consider easy to recognize, which is mostly when inside a speech bubble. Text in pink represents text we consider harder to detect, such as text in covers, sound effects or text outside speech bubbles. Further details can be found in our paper. |
description |
Fil: Matuk Herrera, Rosana. Departamento de Ciencias Básicas. Universidad Nacional de Luján; Argentina |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2023-04-27T17:40:23Z 2023-04-27T17:40:23Z |
dc.type.none.fl_str_mv |
Dataset info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_ddb1 info:ar-repo/semantics/conjuntoDeDatos info:eu-repo/semantics/dataSet |
status_str |
acceptedVersion |
format |
dataSet |
dc.identifier.none.fl_str_mv |
https://doi.org/10.5281/zenodo.4511796 http://ri.unlu.edu.ar/xmlui/handle/rediunlu/1744 |
url |
https://doi.org/10.5281/zenodo.4511796 http://ri.unlu.edu.ar/xmlui/handle/rediunlu/1744 |
dc.language.none.fl_str_mv |
eng en |
language |
eng |
language_invalid_str_mv |
en |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/zip application/octet-stream application/octet-stream |
dc.publisher.none.fl_str_mv |
ECCV 2020: Computer Vision |
publisher.none.fl_str_mv |
ECCV 2020: Computer Vision |
dc.source.none.fl_str_mv |
reponame:REDIUNLU (UNLu) instname:Universidad Nacional de Luján |
reponame_str |
REDIUNLU (UNLu) |
collection |
REDIUNLU (UNLu) |
instname_str |
Universidad Nacional de Luján |
repository.name.fl_str_mv |
REDIUNLU (UNLu) - Universidad Nacional de Luján |
repository.mail.fl_str_mv |
vcano@unlu.edu.ar;fgutierrez@mail.unlu.edu.ar;faquilinogutierrez@gmail.com |
_version_ |
1844621819042070528 |
score |
12.559606 |