COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak

Autores
Yamada, Yuki; Ćepulić, Dominik Borna; Coll Martín, Tao; Debove, Stéphane; Gautreau, Guillaume; Han, Hyemin; Rasmussen, Jesper; Tran, Thao P.; Travaglino, Giovanni A.; Blackburn, Angélique M.; Boullu, Loïs; Bujić, Mila; Byrne, Grace; Caniëls, Marjolein C. J.; Flis, Ivan; Kowal, Marta; Rachev, Nikolay R.; Reynoso Alcántara, Vicenta; Zerhouni, Oulmann; Ahmed, Oli; Amin, Rizwana; Aquino, Sibele; Areias, João Carlos; Aruta, John Jamir Benzon R.; Bamwesigye, Dastan; Bavolar, Jozef; Bender, Andrew R.; Bhandari, Pratik; Bircan, Tuba; Reyna, Cecilia
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.
Fil: Yamada, Yuki. Kyushu University; Japón
Fil: Ćepulić, Dominik Borna. Catholic University of Croatia; Croacia
Fil: Coll Martín, Tao. Universidad de Granada; España
Fil: Debove, Stéphane. Independent Researcher; Francia
Fil: Gautreau, Guillaume. Universite Paris Saclay; Francia
Fil: Han, Hyemin. University of Alabama at Birmingahm; Estados Unidos
Fil: Rasmussen, Jesper. University Aarhus; Dinamarca
Fil: Tran, Thao P.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Travaglino, Giovanni A.. University Of Kent; Reino Unido
Fil: Blackburn, Angélique M.. Texas A&M University; Estados Unidos
Fil: Boullu, Loïs. Independent Researcher; Francia
Fil: Bujić, Mila. Universidad de Tampere; Finlandia
Fil: Byrne, Grace. Vrije Universiteit Amsterdam; Países Bajos
Fil: Caniëls, Marjolein C. J.. Open University of The Netherlands; Países Bajos
Fil: Flis, Ivan. Catholic University of Croatia; Croacia
Fil: Kowal, Marta. University of Wroclaw; Polonia
Fil: Rachev, Nikolay R.. Sofia University St. Kliment Ohridski; Bulgaria
Fil: Reynoso Alcántara, Vicenta. Universidad Nacional Autónoma de México; México
Fil: Zerhouni, Oulmann. Université Paris Nanterre; Francia
Fil: Ahmed, Oli. University of Chittagong; Bangladesh
Fil: Amin, Rizwana. Bahria University; Pakistán
Fil: Aquino, Sibele. Pontifícia Universidade Católica do Rio de Janeiro; Brasil
Fil: Areias, João Carlos. Universidad de Porto; Portugal
Fil: Aruta, John Jamir Benzon R.. de la Salle University; Filipinas
Fil: Bamwesigye, Dastan. Mendel University in Brno; República Checa
Fil: Bavolar, Jozef. Pavol Jozef Safarik University; Eslovaquia
Fil: Bender, Andrew R.. Michigan State University; Estados Unidos
Fil: Bhandari, Pratik. Universitat Saarland; Alemania
Fil: Bircan, Tuba. Vrije Unviversiteit Brussel; Bélgica
Fil: Reyna, Cecilia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
dataset
psychology
COVID-19
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/135516

id CONICETDig_724e824a27d2934519f8418a238da08a
oai_identifier_str oai:ri.conicet.gov.ar:11336/135516
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreakYamada, YukiĆepulić, Dominik BornaColl Martín, TaoDebove, StéphaneGautreau, GuillaumeHan, HyeminRasmussen, JesperTran, Thao P.Travaglino, Giovanni A.Blackburn, Angélique M.Boullu, LoïsBujić, MilaByrne, GraceCaniëls, Marjolein C. J.Flis, IvanKowal, MartaRachev, Nikolay R.Reynoso Alcántara, VicentaZerhouni, OulmannAhmed, OliAmin, RizwanaAquino, SibeleAreias, João CarlosAruta, John Jamir Benzon R.Bamwesigye, DastanBavolar, JozefBender, Andrew R.Bhandari, PratikBircan, TubaReyna, CeciliadatasetpsychologyCOVID-19https://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.Fil: Yamada, Yuki. Kyushu University; JapónFil: Ćepulić, Dominik Borna. Catholic University of Croatia; CroaciaFil: Coll Martín, Tao. Universidad de Granada; EspañaFil: Debove, Stéphane. Independent Researcher; FranciaFil: Gautreau, Guillaume. Universite Paris Saclay; FranciaFil: Han, Hyemin. University of Alabama at Birmingahm; Estados UnidosFil: Rasmussen, Jesper. University Aarhus; DinamarcaFil: Tran, Thao P.. State University of Colorado - Fort Collins; Estados UnidosFil: Travaglino, Giovanni A.. University Of Kent; Reino UnidoFil: Blackburn, Angélique M.. Texas A&M University; Estados UnidosFil: Boullu, Loïs. Independent Researcher; FranciaFil: Bujić, Mila. Universidad de Tampere; FinlandiaFil: Byrne, Grace. Vrije Universiteit Amsterdam; Países BajosFil: Caniëls, Marjolein C. J.. Open University of The Netherlands; Países BajosFil: Flis, Ivan. Catholic University of Croatia; CroaciaFil: Kowal, Marta. University of Wroclaw; PoloniaFil: Rachev, Nikolay R.. Sofia University St. Kliment Ohridski; BulgariaFil: Reynoso Alcántara, Vicenta. Universidad Nacional Autónoma de México; MéxicoFil: Zerhouni, Oulmann. Université Paris Nanterre; FranciaFil: Ahmed, Oli. University of Chittagong; BangladeshFil: Amin, Rizwana. Bahria University; PakistánFil: Aquino, Sibele. Pontifícia Universidade Católica do Rio de Janeiro; BrasilFil: Areias, João Carlos. Universidad de Porto; PortugalFil: Aruta, John Jamir Benzon R.. de la Salle University; FilipinasFil: Bamwesigye, Dastan. Mendel University in Brno; República ChecaFil: Bavolar, Jozef. Pavol Jozef Safarik University; EslovaquiaFil: Bender, Andrew R.. Michigan State University; Estados UnidosFil: Bhandari, Pratik. Universitat Saarland; AlemaniaFil: Bircan, Tuba. Vrije Unviversiteit Brussel; BélgicaFil: Reyna, Cecilia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaNature2021-01-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135516Yamada, Yuki; Ćepulić, Dominik Borna; Coll Martín, Tao; Debove, Stéphane; Gautreau, Guillaume; et al.; COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak; Nature; Scientific Data; 8; 1; 4-1-2021; 1-232052-4463CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-020-00784-9info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41597-020-00784-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:03Zoai:ri.conicet.gov.ar:11336/135516instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:03.736CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
title COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
spellingShingle COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
Yamada, Yuki
dataset
psychology
COVID-19
title_short COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
title_full COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
title_fullStr COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
title_full_unstemmed COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
title_sort COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
dc.creator.none.fl_str_mv Yamada, Yuki
Ćepulić, Dominik Borna
Coll Martín, Tao
Debove, Stéphane
Gautreau, Guillaume
Han, Hyemin
Rasmussen, Jesper
Tran, Thao P.
Travaglino, Giovanni A.
Blackburn, Angélique M.
Boullu, Loïs
Bujić, Mila
Byrne, Grace
Caniëls, Marjolein C. J.
Flis, Ivan
Kowal, Marta
Rachev, Nikolay R.
Reynoso Alcántara, Vicenta
Zerhouni, Oulmann
Ahmed, Oli
Amin, Rizwana
Aquino, Sibele
Areias, João Carlos
Aruta, John Jamir Benzon R.
Bamwesigye, Dastan
Bavolar, Jozef
Bender, Andrew R.
Bhandari, Pratik
Bircan, Tuba
Reyna, Cecilia
author Yamada, Yuki
author_facet Yamada, Yuki
Ćepulić, Dominik Borna
Coll Martín, Tao
Debove, Stéphane
Gautreau, Guillaume
Han, Hyemin
Rasmussen, Jesper
Tran, Thao P.
Travaglino, Giovanni A.
Blackburn, Angélique M.
Boullu, Loïs
Bujić, Mila
Byrne, Grace
Caniëls, Marjolein C. J.
Flis, Ivan
Kowal, Marta
Rachev, Nikolay R.
Reynoso Alcántara, Vicenta
Zerhouni, Oulmann
Ahmed, Oli
Amin, Rizwana
Aquino, Sibele
Areias, João Carlos
Aruta, John Jamir Benzon R.
Bamwesigye, Dastan
Bavolar, Jozef
Bender, Andrew R.
Bhandari, Pratik
Bircan, Tuba
Reyna, Cecilia
author_role author
author2 Ćepulić, Dominik Borna
Coll Martín, Tao
Debove, Stéphane
Gautreau, Guillaume
Han, Hyemin
Rasmussen, Jesper
Tran, Thao P.
Travaglino, Giovanni A.
Blackburn, Angélique M.
Boullu, Loïs
Bujić, Mila
Byrne, Grace
Caniëls, Marjolein C. J.
Flis, Ivan
Kowal, Marta
Rachev, Nikolay R.
Reynoso Alcántara, Vicenta
Zerhouni, Oulmann
Ahmed, Oli
Amin, Rizwana
Aquino, Sibele
Areias, João Carlos
Aruta, John Jamir Benzon R.
Bamwesigye, Dastan
Bavolar, Jozef
Bender, Andrew R.
Bhandari, Pratik
Bircan, Tuba
Reyna, Cecilia
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv dataset
psychology
COVID-19
topic dataset
psychology
COVID-19
purl_subject.fl_str_mv https://purl.org/becyt/ford/5.1
https://purl.org/becyt/ford/5
dc.description.none.fl_txt_mv This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.
Fil: Yamada, Yuki. Kyushu University; Japón
Fil: Ćepulić, Dominik Borna. Catholic University of Croatia; Croacia
Fil: Coll Martín, Tao. Universidad de Granada; España
Fil: Debove, Stéphane. Independent Researcher; Francia
Fil: Gautreau, Guillaume. Universite Paris Saclay; Francia
Fil: Han, Hyemin. University of Alabama at Birmingahm; Estados Unidos
Fil: Rasmussen, Jesper. University Aarhus; Dinamarca
Fil: Tran, Thao P.. State University of Colorado - Fort Collins; Estados Unidos
Fil: Travaglino, Giovanni A.. University Of Kent; Reino Unido
Fil: Blackburn, Angélique M.. Texas A&M University; Estados Unidos
Fil: Boullu, Loïs. Independent Researcher; Francia
Fil: Bujić, Mila. Universidad de Tampere; Finlandia
Fil: Byrne, Grace. Vrije Universiteit Amsterdam; Países Bajos
Fil: Caniëls, Marjolein C. J.. Open University of The Netherlands; Países Bajos
Fil: Flis, Ivan. Catholic University of Croatia; Croacia
Fil: Kowal, Marta. University of Wroclaw; Polonia
Fil: Rachev, Nikolay R.. Sofia University St. Kliment Ohridski; Bulgaria
Fil: Reynoso Alcántara, Vicenta. Universidad Nacional Autónoma de México; México
Fil: Zerhouni, Oulmann. Université Paris Nanterre; Francia
Fil: Ahmed, Oli. University of Chittagong; Bangladesh
Fil: Amin, Rizwana. Bahria University; Pakistán
Fil: Aquino, Sibele. Pontifícia Universidade Católica do Rio de Janeiro; Brasil
Fil: Areias, João Carlos. Universidad de Porto; Portugal
Fil: Aruta, John Jamir Benzon R.. de la Salle University; Filipinas
Fil: Bamwesigye, Dastan. Mendel University in Brno; República Checa
Fil: Bavolar, Jozef. Pavol Jozef Safarik University; Eslovaquia
Fil: Bender, Andrew R.. Michigan State University; Estados Unidos
Fil: Bhandari, Pratik. Universitat Saarland; Alemania
Fil: Bircan, Tuba. Vrije Unviversiteit Brussel; Bélgica
Fil: Reyna, Cecilia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/135516
Yamada, Yuki; Ćepulić, Dominik Borna; Coll Martín, Tao; Debove, Stéphane; Gautreau, Guillaume; et al.; COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak; Nature; Scientific Data; 8; 1; 4-1-2021; 1-23
2052-4463
CONICET Digital
CONICET
url http://hdl.handle.net/11336/135516
identifier_str_mv Yamada, Yuki; Ćepulić, Dominik Borna; Coll Martín, Tao; Debove, Stéphane; Gautreau, Guillaume; et al.; COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak; Nature; Scientific Data; 8; 1; 4-1-2021; 1-23
2052-4463
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-020-00784-9
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41597-020-00784-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269834527637504
score 13.13397