Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish
- Autores
- Tessore, Juan Pablo; Esnaola, Leonardo Martín; Lanzarini, Laura Cristina; Baldassarri, Sandra Silvia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tagged language resources are an essential requirement for developing machine-learning text-based classifiers. However, manual tagging is extremely time consuming and the resulting datasets are rather small, containing only a few thousand samples. Basic emotion datasets are particularly difficult to classify manually because categorization is prone to subjectivity, and thus, redundant classification is required to validate the assigned tag. Even though, in recent years, the amount of emotion-tagged text datasets in Spanish has been growing, it cannot be compared with the number, size, and quality of the datasets in English. Quality is a particularly concerning issue, as not many datasets in Spanish included a validation step in the construction process. In this article, a dataset of social media comments in Spanish is compiled, selected, filtered, and presented. A sample of the dataset is reclassified by a group of psychologists and validated using the Fleiss Kappa interrater agreement measure. Error analysis is performed by using the Sentic Computing tool BabelSenticNet. Results indicate that the agreement between the human raters and the automatically acquired tag is moderate, similar to other manually tagged datasets, with the advantages that the presented dataset contains several hundreds of thousands of tagged comments and it does not require extensive manual tagging. The agreement measured between human raters is very similar to the one between human raters and the original tag. Every measure presented is in the moderate agreement zone and, as such, suitable for training classification algorithms in sentiment analysis field.
Fil: Tessore, Juan Pablo. Universidad Nacional del Noroeste de la Pcia.de Bs.as.. Escuela de Tecnologia. Instituto de Investigacion y Transferencia En Tecnologia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Instituto de Investigacion y Transferencia En Tecnologia.; Argentina
Fil: Esnaola, Leonardo Martín. Universidad Nacional del Noroeste de la Pcia.de Bs.as.. Escuela de Tecnologia. Instituto de Investigacion y Transferencia En Tecnologia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Instituto de Investigacion y Transferencia En Tecnologia.; Argentina
Fil: Lanzarini, Laura Cristina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
Fil: Baldassarri, Sandra Silvia. Universidad de Zaragoza; España - Materia
-
DATASET CONSTRUCTION
DATASET VALIDATION
FACEBOOK
SENTIMENT ANALYSIS
TEXT MINING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215171
Ver los metadatos del registro completo
id |
CONICETDig_ee05b040152510b70838578d7b43f34f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215171 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in SpanishTessore, Juan PabloEsnaola, Leonardo MartínLanzarini, Laura CristinaBaldassarri, Sandra SilviaDATASET CONSTRUCTIONDATASET VALIDATIONFACEBOOKSENTIMENT ANALYSISTEXT MININGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Tagged language resources are an essential requirement for developing machine-learning text-based classifiers. However, manual tagging is extremely time consuming and the resulting datasets are rather small, containing only a few thousand samples. Basic emotion datasets are particularly difficult to classify manually because categorization is prone to subjectivity, and thus, redundant classification is required to validate the assigned tag. Even though, in recent years, the amount of emotion-tagged text datasets in Spanish has been growing, it cannot be compared with the number, size, and quality of the datasets in English. Quality is a particularly concerning issue, as not many datasets in Spanish included a validation step in the construction process. In this article, a dataset of social media comments in Spanish is compiled, selected, filtered, and presented. A sample of the dataset is reclassified by a group of psychologists and validated using the Fleiss Kappa interrater agreement measure. Error analysis is performed by using the Sentic Computing tool BabelSenticNet. Results indicate that the agreement between the human raters and the automatically acquired tag is moderate, similar to other manually tagged datasets, with the advantages that the presented dataset contains several hundreds of thousands of tagged comments and it does not require extensive manual tagging. The agreement measured between human raters is very similar to the one between human raters and the original tag. Every measure presented is in the moderate agreement zone and, as such, suitable for training classification algorithms in sentiment analysis field.Fil: Tessore, Juan Pablo. Universidad Nacional del Noroeste de la Pcia.de Bs.as.. Escuela de Tecnologia. Instituto de Investigacion y Transferencia En Tecnologia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Instituto de Investigacion y Transferencia En Tecnologia.; ArgentinaFil: Esnaola, Leonardo Martín. Universidad Nacional del Noroeste de la Pcia.de Bs.as.. Escuela de Tecnologia. Instituto de Investigacion y Transferencia En Tecnologia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Instituto de Investigacion y Transferencia En Tecnologia.; ArgentinaFil: Lanzarini, Laura Cristina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; ArgentinaFil: Baldassarri, Sandra Silvia. Universidad de Zaragoza; EspañaSpringer2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215171Tessore, Juan Pablo; Esnaola, Leonardo Martín; Lanzarini, Laura Cristina; Baldassarri, Sandra Silvia; Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish; Springer; Cognitive Computation; 14; 1; 1-2021; 407-4241866-99561866-9964CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12559-020-09800-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:46Zoai:ri.conicet.gov.ar:11336/215171instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:46.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish |
title |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish |
spellingShingle |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish Tessore, Juan Pablo DATASET CONSTRUCTION DATASET VALIDATION SENTIMENT ANALYSIS TEXT MINING |
title_short |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish |
title_full |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish |
title_fullStr |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish |
title_full_unstemmed |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish |
title_sort |
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish |
dc.creator.none.fl_str_mv |
Tessore, Juan Pablo Esnaola, Leonardo Martín Lanzarini, Laura Cristina Baldassarri, Sandra Silvia |
author |
Tessore, Juan Pablo |
author_facet |
Tessore, Juan Pablo Esnaola, Leonardo Martín Lanzarini, Laura Cristina Baldassarri, Sandra Silvia |
author_role |
author |
author2 |
Esnaola, Leonardo Martín Lanzarini, Laura Cristina Baldassarri, Sandra Silvia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DATASET CONSTRUCTION DATASET VALIDATION SENTIMENT ANALYSIS TEXT MINING |
topic |
DATASET CONSTRUCTION DATASET VALIDATION SENTIMENT ANALYSIS TEXT MINING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Tagged language resources are an essential requirement for developing machine-learning text-based classifiers. However, manual tagging is extremely time consuming and the resulting datasets are rather small, containing only a few thousand samples. Basic emotion datasets are particularly difficult to classify manually because categorization is prone to subjectivity, and thus, redundant classification is required to validate the assigned tag. Even though, in recent years, the amount of emotion-tagged text datasets in Spanish has been growing, it cannot be compared with the number, size, and quality of the datasets in English. Quality is a particularly concerning issue, as not many datasets in Spanish included a validation step in the construction process. In this article, a dataset of social media comments in Spanish is compiled, selected, filtered, and presented. A sample of the dataset is reclassified by a group of psychologists and validated using the Fleiss Kappa interrater agreement measure. Error analysis is performed by using the Sentic Computing tool BabelSenticNet. Results indicate that the agreement between the human raters and the automatically acquired tag is moderate, similar to other manually tagged datasets, with the advantages that the presented dataset contains several hundreds of thousands of tagged comments and it does not require extensive manual tagging. The agreement measured between human raters is very similar to the one between human raters and the original tag. Every measure presented is in the moderate agreement zone and, as such, suitable for training classification algorithms in sentiment analysis field. Fil: Tessore, Juan Pablo. Universidad Nacional del Noroeste de la Pcia.de Bs.as.. Escuela de Tecnologia. Instituto de Investigacion y Transferencia En Tecnologia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Instituto de Investigacion y Transferencia En Tecnologia.; Argentina Fil: Esnaola, Leonardo Martín. Universidad Nacional del Noroeste de la Pcia.de Bs.as.. Escuela de Tecnologia. Instituto de Investigacion y Transferencia En Tecnologia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Instituto de Investigacion y Transferencia En Tecnologia.; Argentina Fil: Lanzarini, Laura Cristina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina Fil: Baldassarri, Sandra Silvia. Universidad de Zaragoza; España |
description |
Tagged language resources are an essential requirement for developing machine-learning text-based classifiers. However, manual tagging is extremely time consuming and the resulting datasets are rather small, containing only a few thousand samples. Basic emotion datasets are particularly difficult to classify manually because categorization is prone to subjectivity, and thus, redundant classification is required to validate the assigned tag. Even though, in recent years, the amount of emotion-tagged text datasets in Spanish has been growing, it cannot be compared with the number, size, and quality of the datasets in English. Quality is a particularly concerning issue, as not many datasets in Spanish included a validation step in the construction process. In this article, a dataset of social media comments in Spanish is compiled, selected, filtered, and presented. A sample of the dataset is reclassified by a group of psychologists and validated using the Fleiss Kappa interrater agreement measure. Error analysis is performed by using the Sentic Computing tool BabelSenticNet. Results indicate that the agreement between the human raters and the automatically acquired tag is moderate, similar to other manually tagged datasets, with the advantages that the presented dataset contains several hundreds of thousands of tagged comments and it does not require extensive manual tagging. The agreement measured between human raters is very similar to the one between human raters and the original tag. Every measure presented is in the moderate agreement zone and, as such, suitable for training classification algorithms in sentiment analysis field. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215171 Tessore, Juan Pablo; Esnaola, Leonardo Martín; Lanzarini, Laura Cristina; Baldassarri, Sandra Silvia; Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish; Springer; Cognitive Computation; 14; 1; 1-2021; 407-424 1866-9956 1866-9964 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215171 |
identifier_str_mv |
Tessore, Juan Pablo; Esnaola, Leonardo Martín; Lanzarini, Laura Cristina; Baldassarri, Sandra Silvia; Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish; Springer; Cognitive Computation; 14; 1; 1-2021; 407-424 1866-9956 1866-9964 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12559-020-09800-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269600437239808 |
score |
13.13397 |