Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes

Autores
Joekes, Silvia; Smrekar, Marcelo; Pimentel Barbosa, Emanuel
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Fil: Joekes, Silvia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.
Fil: Smrekar, Marcelo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Laboratorio de Ingeniería y Mantenimiento Industrial; Argentina.
Fil: Pimentel Barbosa, Emanuel. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. Departamento de Estatística; Brazil.
Los procesos industriales de alta calidad (baja fracción de unidades no conformes), requieren que se deba prestar especial atención a los métodos de control empleados, dado que los tradicionales gráficos de control de Shewhart ya no son más apropiados. Una alternativa consiste en la determinación de gráficos de control clasificados en la categoría de gráficos de conformidades acumuladas, que tienen a la distribución geométrica o la distribución binomial negativa o a alguna de sus variantes como distribuciones de probabilidad subyacente. En este trabajo son considerados los gráficos CCC-r que se basan en el recuento acumulado de ítems conformes producidos antes de que se observen r ítems no conformes. Sin embargo, aunque estos gráficos han demostrado ser útiles en el seguimiento de procesos de alta calidad, poseen la característica de que la longitud promedio de corrida (ARL) es sesgada. Para evitar esta dificultad, existen dos propuestas en la literatura. Una basada en la determinación de límites de control mediante la incorporación de un coeficiente de ajuste obtenido a partir de la maximización de la longitud media de corrida (ARL) y otra que propone determinar límites de control del gráfico CCC-r, mediante un procedimiento iterativo tendiente a obtener un ARL cuasi insesgado y cuasi maximal. A efectos de determinar la mejor opción, se realiza un estudio computacional de validación estadística para comparar ambos procedimientos mediante un experimento de simulación para los casos r = 2, 3 y 4, evaluando la performance en función de la longitud promedio de corrida (ARL). Los resultados muestran que una de las propuestas es más eficiente para detectar el deterioro del proceso mientras que la otra es más adecuada para monitorear la mejora del proceso. Finalmente se muestra la aplicación del gráfico CCC-r a un proceso real con datos de una planta de autopartes, con análisis y discusión de los resultados.
Fil: Joekes, Silvia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.
Fil: Smrekar, Marcelo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Laboratorio de Ingeniería y Mantenimiento Industrial; Argentina.
Fil: Pimentel Barbosa, Emanuel. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. Departamento de Estatística; Brazil.
Estadística y Probabilidad
Materia
Procesos de alta calidad
Gráficos de control CCC-r
Distribución binomial negativa
Longitud promedio de corrida (ARL)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/28150

id RDUUNC_7a04d0e6f1d5c4da10bc1247d6b4a864
oai_identifier_str oai:rdu.unc.edu.ar:11086/28150
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartesJoekes, SilviaSmrekar, MarceloPimentel Barbosa, EmanuelProcesos de alta calidadGráficos de control CCC-rDistribución binomial negativaLongitud promedio de corrida (ARL)Fil: Joekes, Silvia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Smrekar, Marcelo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Laboratorio de Ingeniería y Mantenimiento Industrial; Argentina.Fil: Pimentel Barbosa, Emanuel. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. Departamento de Estatística; Brazil.Los procesos industriales de alta calidad (baja fracción de unidades no conformes), requieren que se deba prestar especial atención a los métodos de control empleados, dado que los tradicionales gráficos de control de Shewhart ya no son más apropiados. Una alternativa consiste en la determinación de gráficos de control clasificados en la categoría de gráficos de conformidades acumuladas, que tienen a la distribución geométrica o la distribución binomial negativa o a alguna de sus variantes como distribuciones de probabilidad subyacente. En este trabajo son considerados los gráficos CCC-r que se basan en el recuento acumulado de ítems conformes producidos antes de que se observen r ítems no conformes. Sin embargo, aunque estos gráficos han demostrado ser útiles en el seguimiento de procesos de alta calidad, poseen la característica de que la longitud promedio de corrida (ARL) es sesgada. Para evitar esta dificultad, existen dos propuestas en la literatura. Una basada en la determinación de límites de control mediante la incorporación de un coeficiente de ajuste obtenido a partir de la maximización de la longitud media de corrida (ARL) y otra que propone determinar límites de control del gráfico CCC-r, mediante un procedimiento iterativo tendiente a obtener un ARL cuasi insesgado y cuasi maximal. A efectos de determinar la mejor opción, se realiza un estudio computacional de validación estadística para comparar ambos procedimientos mediante un experimento de simulación para los casos r = 2, 3 y 4, evaluando la performance en función de la longitud promedio de corrida (ARL). Los resultados muestran que una de las propuestas es más eficiente para detectar el deterioro del proceso mientras que la otra es más adecuada para monitorear la mejora del proceso. Finalmente se muestra la aplicación del gráfico CCC-r a un proceso real con datos de una planta de autopartes, con análisis y discusión de los resultados.Fil: Joekes, Silvia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Smrekar, Marcelo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Laboratorio de Ingeniería y Mantenimiento Industrial; Argentina.Fil: Pimentel Barbosa, Emanuel. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. Departamento de Estatística; Brazil.Estadística y Probabilidad2014-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/11086/28150spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-11T10:24:01Zoai:rdu.unc.edu.ar:11086/28150Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-11 10:24:02.228Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes
title Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes
spellingShingle Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes
Joekes, Silvia
Procesos de alta calidad
Gráficos de control CCC-r
Distribución binomial negativa
Longitud promedio de corrida (ARL)
title_short Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes
title_full Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes
title_fullStr Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes
title_full_unstemmed Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes
title_sort Estudio del gráfico de control CCC-r para procesos de alta calidad y su aplicación con datos de una planta de autopartes
dc.creator.none.fl_str_mv Joekes, Silvia
Smrekar, Marcelo
Pimentel Barbosa, Emanuel
author Joekes, Silvia
author_facet Joekes, Silvia
Smrekar, Marcelo
Pimentel Barbosa, Emanuel
author_role author
author2 Smrekar, Marcelo
Pimentel Barbosa, Emanuel
author2_role author
author
dc.subject.none.fl_str_mv Procesos de alta calidad
Gráficos de control CCC-r
Distribución binomial negativa
Longitud promedio de corrida (ARL)
topic Procesos de alta calidad
Gráficos de control CCC-r
Distribución binomial negativa
Longitud promedio de corrida (ARL)
dc.description.none.fl_txt_mv Fil: Joekes, Silvia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.
Fil: Smrekar, Marcelo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Laboratorio de Ingeniería y Mantenimiento Industrial; Argentina.
Fil: Pimentel Barbosa, Emanuel. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. Departamento de Estatística; Brazil.
Los procesos industriales de alta calidad (baja fracción de unidades no conformes), requieren que se deba prestar especial atención a los métodos de control empleados, dado que los tradicionales gráficos de control de Shewhart ya no son más apropiados. Una alternativa consiste en la determinación de gráficos de control clasificados en la categoría de gráficos de conformidades acumuladas, que tienen a la distribución geométrica o la distribución binomial negativa o a alguna de sus variantes como distribuciones de probabilidad subyacente. En este trabajo son considerados los gráficos CCC-r que se basan en el recuento acumulado de ítems conformes producidos antes de que se observen r ítems no conformes. Sin embargo, aunque estos gráficos han demostrado ser útiles en el seguimiento de procesos de alta calidad, poseen la característica de que la longitud promedio de corrida (ARL) es sesgada. Para evitar esta dificultad, existen dos propuestas en la literatura. Una basada en la determinación de límites de control mediante la incorporación de un coeficiente de ajuste obtenido a partir de la maximización de la longitud media de corrida (ARL) y otra que propone determinar límites de control del gráfico CCC-r, mediante un procedimiento iterativo tendiente a obtener un ARL cuasi insesgado y cuasi maximal. A efectos de determinar la mejor opción, se realiza un estudio computacional de validación estadística para comparar ambos procedimientos mediante un experimento de simulación para los casos r = 2, 3 y 4, evaluando la performance en función de la longitud promedio de corrida (ARL). Los resultados muestran que una de las propuestas es más eficiente para detectar el deterioro del proceso mientras que la otra es más adecuada para monitorear la mejora del proceso. Finalmente se muestra la aplicación del gráfico CCC-r a un proceso real con datos de una planta de autopartes, con análisis y discusión de los resultados.
Fil: Joekes, Silvia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.
Fil: Smrekar, Marcelo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Laboratorio de Ingeniería y Mantenimiento Industrial; Argentina.
Fil: Pimentel Barbosa, Emanuel. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. Departamento de Estatística; Brazil.
Estadística y Probabilidad
description Fil: Joekes, Silvia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/28150
url http://hdl.handle.net/11086/28150
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1842975302854115328
score 12.993085