Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
- Autores
- Rodríguez Núñez, Martín; Tavera Busso, Iván; Carreras, Hebe Alejandra
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.
info:eu-repo/semantics/publishedVersion
Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina. - Materia
-
PM2.5
Cyclist
Machine Learning
Exposure models
Urban environments
NATURAL SCIENCES::Earth sciences - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/557829
Ver los metadatos del registro completo
id |
RDUUNC_62bddfa86b78c14a5eccc015fd0f3c80 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/557829 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniquesRodríguez Núñez, MartínTavera Busso, IvánCarreras, Hebe AlejandraPM2.5CyclistMachine LearningExposure modelsUrban environmentsNATURAL SCIENCES::Earth sciencesFil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.info:eu-repo/semantics/publishedVersionFil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.https://orcid.org/0000-0003-1585-26122024-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfRodríguez Núñez, Martín; Tavera Busso, Iván; Carreras, Hebe Alejandra; Cuantificación de la contribución de las variables ambientales a la exposición de los ciclistas a PM2.5 mediante técnicas de aprendizaje automático; Elsevier; Heliyon; 10; 2; 1-2024; 1-122405-8440http://hdl.handle.net/11086/557829https://www.sciencedirect.com/science/article/pii/S2405844024007552https://doi.org/10.1016/j.heliyon.2024.e24724enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:40:51Zoai:rdu.unc.edu.ar:11086/557829Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:40:51.932Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
spellingShingle |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques Rodríguez Núñez, Martín PM2.5 Cyclist Machine Learning Exposure models Urban environments NATURAL SCIENCES::Earth sciences |
title_short |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title_full |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title_fullStr |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title_full_unstemmed |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title_sort |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
dc.creator.none.fl_str_mv |
Rodríguez Núñez, Martín Tavera Busso, Iván Carreras, Hebe Alejandra |
author |
Rodríguez Núñez, Martín |
author_facet |
Rodríguez Núñez, Martín Tavera Busso, Iván Carreras, Hebe Alejandra |
author_role |
author |
author2 |
Tavera Busso, Iván Carreras, Hebe Alejandra |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0003-1585-2612 |
dc.subject.none.fl_str_mv |
PM2.5 Cyclist Machine Learning Exposure models Urban environments NATURAL SCIENCES::Earth sciences |
topic |
PM2.5 Cyclist Machine Learning Exposure models Urban environments NATURAL SCIENCES::Earth sciences |
dc.description.none.fl_txt_mv |
Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina. Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina. Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina. Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina. Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes. info:eu-repo/semantics/publishedVersion Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina. Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina. Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina. Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina. |
description |
Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
status_str |
publishedVersion |
format |
article |
dc.identifier.none.fl_str_mv |
Rodríguez Núñez, Martín; Tavera Busso, Iván; Carreras, Hebe Alejandra; Cuantificación de la contribución de las variables ambientales a la exposición de los ciclistas a PM2.5 mediante técnicas de aprendizaje automático; Elsevier; Heliyon; 10; 2; 1-2024; 1-12 2405-8440 http://hdl.handle.net/11086/557829 https://www.sciencedirect.com/science/article/pii/S2405844024007552 https://doi.org/10.1016/j.heliyon.2024.e24724 |
identifier_str_mv |
Rodríguez Núñez, Martín; Tavera Busso, Iván; Carreras, Hebe Alejandra; Cuantificación de la contribución de las variables ambientales a la exposición de los ciclistas a PM2.5 mediante técnicas de aprendizaje automático; Elsevier; Heliyon; 10; 2; 1-2024; 1-12 2405-8440 |
url |
http://hdl.handle.net/11086/557829 https://www.sciencedirect.com/science/article/pii/S2405844024007552 https://doi.org/10.1016/j.heliyon.2024.e24724 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618885984157696 |
score |
13.070432 |