Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques

Autores
Rodríguez Núñez, Martín; Tavera Busso, Iván; Carreras, Hebe Alejandra
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.
info:eu-repo/semantics/publishedVersion
Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Materia
PM2.5
Cyclist
Machine Learning
Exposure models
Urban environments
NATURAL SCIENCES::Earth sciences
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/557829

id RDUUNC_62bddfa86b78c14a5eccc015fd0f3c80
oai_identifier_str oai:rdu.unc.edu.ar:11086/557829
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniquesRodríguez Núñez, MartínTavera Busso, IvánCarreras, Hebe AlejandraPM2.5CyclistMachine LearningExposure modelsUrban environmentsNATURAL SCIENCES::Earth sciencesFil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.info:eu-repo/semantics/publishedVersionFil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.https://orcid.org/0000-0003-1585-26122024-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfRodríguez Núñez, Martín; Tavera Busso, Iván; Carreras, Hebe Alejandra; Cuantificación de la contribución de las variables ambientales a la exposición de los ciclistas a PM2.5 mediante técnicas de aprendizaje automático; Elsevier; Heliyon; 10; 2; 1-2024; 1-122405-8440http://hdl.handle.net/11086/557829https://www.sciencedirect.com/science/article/pii/S2405844024007552https://doi.org/10.1016/j.heliyon.2024.e24724enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:40:51Zoai:rdu.unc.edu.ar:11086/557829Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:40:51.932Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
title Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
spellingShingle Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
Rodríguez Núñez, Martín
PM2.5
Cyclist
Machine Learning
Exposure models
Urban environments
NATURAL SCIENCES::Earth sciences
title_short Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
title_full Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
title_fullStr Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
title_full_unstemmed Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
title_sort Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
dc.creator.none.fl_str_mv Rodríguez Núñez, Martín
Tavera Busso, Iván
Carreras, Hebe Alejandra
author Rodríguez Núñez, Martín
author_facet Rodríguez Núñez, Martín
Tavera Busso, Iván
Carreras, Hebe Alejandra
author_role author
author2 Tavera Busso, Iván
Carreras, Hebe Alejandra
author2_role author
author
dc.contributor.none.fl_str_mv https://orcid.org/0000-0003-1585-2612
dc.subject.none.fl_str_mv PM2.5
Cyclist
Machine Learning
Exposure models
Urban environments
NATURAL SCIENCES::Earth sciences
topic PM2.5
Cyclist
Machine Learning
Exposure models
Urban environments
NATURAL SCIENCES::Earth sciences
dc.description.none.fl_txt_mv Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.
info:eu-repo/semantics/publishedVersion
Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Rodríguez Núñez, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
Fil: Tavera Busso, Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.
description Fil: Rodríguez Núñez, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales; Argentina.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
status_str publishedVersion
format article
dc.identifier.none.fl_str_mv Rodríguez Núñez, Martín; Tavera Busso, Iván; Carreras, Hebe Alejandra; Cuantificación de la contribución de las variables ambientales a la exposición de los ciclistas a PM2.5 mediante técnicas de aprendizaje automático; Elsevier; Heliyon; 10; 2; 1-2024; 1-12
2405-8440
http://hdl.handle.net/11086/557829
https://www.sciencedirect.com/science/article/pii/S2405844024007552
https://doi.org/10.1016/j.heliyon.2024.e24724
identifier_str_mv Rodríguez Núñez, Martín; Tavera Busso, Iván; Carreras, Hebe Alejandra; Cuantificación de la contribución de las variables ambientales a la exposición de los ciclistas a PM2.5 mediante técnicas de aprendizaje automático; Elsevier; Heliyon; 10; 2; 1-2024; 1-12
2405-8440
url http://hdl.handle.net/11086/557829
https://www.sciencedirect.com/science/article/pii/S2405844024007552
https://doi.org/10.1016/j.heliyon.2024.e24724
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1844618885984157696
score 13.070432