Model-based deep learning framework for accelerated optical projection tomography
- Autores
- Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.
Fil: Obando, Marcos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Bassi, Andrea. Politecnico di Milano; Italia
Fil: Ducros, Nicolas. Centre National de la Recherche Scientifique; Francia
Fil: Mato, German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Correia, Teresa M.. Kings College London (kcl); - Materia
-
optical projection tomography
deep learning
acceleration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225457
Ver los metadatos del registro completo
id |
CONICETDig_813f65844615cce5df85622441f5124f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225457 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Model-based deep learning framework for accelerated optical projection tomographyObando, MarcosBassi, AndreaDucros, NicolasMato, GermanCorreia, Teresa M.optical projection tomographydeep learningaccelerationhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.Fil: Obando, Marcos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Bassi, Andrea. Politecnico di Milano; ItaliaFil: Ducros, Nicolas. Centre National de la Recherche Scientifique; FranciaFil: Mato, German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Correia, Teresa M.. Kings College London (kcl);Nature2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225457Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.; Model-based deep learning framework for accelerated optical projection tomography; Nature; Scientific Reports; 13; 1; 12-2023; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-47650-3info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-47650-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:55Zoai:ri.conicet.gov.ar:11336/225457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:55.441CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Model-based deep learning framework for accelerated optical projection tomography |
title |
Model-based deep learning framework for accelerated optical projection tomography |
spellingShingle |
Model-based deep learning framework for accelerated optical projection tomography Obando, Marcos optical projection tomography deep learning acceleration |
title_short |
Model-based deep learning framework for accelerated optical projection tomography |
title_full |
Model-based deep learning framework for accelerated optical projection tomography |
title_fullStr |
Model-based deep learning framework for accelerated optical projection tomography |
title_full_unstemmed |
Model-based deep learning framework for accelerated optical projection tomography |
title_sort |
Model-based deep learning framework for accelerated optical projection tomography |
dc.creator.none.fl_str_mv |
Obando, Marcos Bassi, Andrea Ducros, Nicolas Mato, German Correia, Teresa M. |
author |
Obando, Marcos |
author_facet |
Obando, Marcos Bassi, Andrea Ducros, Nicolas Mato, German Correia, Teresa M. |
author_role |
author |
author2 |
Bassi, Andrea Ducros, Nicolas Mato, German Correia, Teresa M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
optical projection tomography deep learning acceleration |
topic |
optical projection tomography deep learning acceleration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller. Fil: Obando, Marcos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Bassi, Andrea. Politecnico di Milano; Italia Fil: Ducros, Nicolas. Centre National de la Recherche Scientifique; Francia Fil: Mato, German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Correia, Teresa M.. Kings College London (kcl); |
description |
In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225457 Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.; Model-based deep learning framework for accelerated optical projection tomography; Nature; Scientific Reports; 13; 1; 12-2023; 1-9 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225457 |
identifier_str_mv |
Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.; Model-based deep learning framework for accelerated optical projection tomography; Nature; Scientific Reports; 13; 1; 12-2023; 1-9 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-47650-3 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-47650-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082997371011072 |
score |
13.22299 |