Model-based deep learning framework for accelerated optical projection tomography

Autores
Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.
Fil: Obando, Marcos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Bassi, Andrea. Politecnico di Milano; Italia
Fil: Ducros, Nicolas. Centre National de la Recherche Scientifique; Francia
Fil: Mato, German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Correia, Teresa M.. Kings College London (kcl);
Materia
optical projection tomography
deep learning
acceleration
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/225457

id CONICETDig_813f65844615cce5df85622441f5124f
oai_identifier_str oai:ri.conicet.gov.ar:11336/225457
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Model-based deep learning framework for accelerated optical projection tomographyObando, MarcosBassi, AndreaDucros, NicolasMato, GermanCorreia, Teresa M.optical projection tomographydeep learningaccelerationhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.Fil: Obando, Marcos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Bassi, Andrea. Politecnico di Milano; ItaliaFil: Ducros, Nicolas. Centre National de la Recherche Scientifique; FranciaFil: Mato, German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Correia, Teresa M.. Kings College London (kcl);Nature2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225457Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.; Model-based deep learning framework for accelerated optical projection tomography; Nature; Scientific Reports; 13; 1; 12-2023; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-47650-3info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-47650-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:55Zoai:ri.conicet.gov.ar:11336/225457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:55.441CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Model-based deep learning framework for accelerated optical projection tomography
title Model-based deep learning framework for accelerated optical projection tomography
spellingShingle Model-based deep learning framework for accelerated optical projection tomography
Obando, Marcos
optical projection tomography
deep learning
acceleration
title_short Model-based deep learning framework for accelerated optical projection tomography
title_full Model-based deep learning framework for accelerated optical projection tomography
title_fullStr Model-based deep learning framework for accelerated optical projection tomography
title_full_unstemmed Model-based deep learning framework for accelerated optical projection tomography
title_sort Model-based deep learning framework for accelerated optical projection tomography
dc.creator.none.fl_str_mv Obando, Marcos
Bassi, Andrea
Ducros, Nicolas
Mato, German
Correia, Teresa M.
author Obando, Marcos
author_facet Obando, Marcos
Bassi, Andrea
Ducros, Nicolas
Mato, German
Correia, Teresa M.
author_role author
author2 Bassi, Andrea
Ducros, Nicolas
Mato, German
Correia, Teresa M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv optical projection tomography
deep learning
acceleration
topic optical projection tomography
deep learning
acceleration
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.
Fil: Obando, Marcos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Bassi, Andrea. Politecnico di Milano; Italia
Fil: Ducros, Nicolas. Centre National de la Recherche Scientifique; Francia
Fil: Mato, German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Correia, Teresa M.. Kings College London (kcl);
description In this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/225457
Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.; Model-based deep learning framework for accelerated optical projection tomography; Nature; Scientific Reports; 13; 1; 12-2023; 1-9
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/225457
identifier_str_mv Obando, Marcos; Bassi, Andrea; Ducros, Nicolas; Mato, German; Correia, Teresa M.; Model-based deep learning framework for accelerated optical projection tomography; Nature; Scientific Reports; 13; 1; 12-2023; 1-9
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-47650-3
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-47650-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082997371011072
score 13.22299