Mapeo de materia orgánica del suelo a escala de campo

Autores
Córdoba, Mariano Augusto; Balzarini, Mónica Graciela
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Ponencia presentada en las 49 Jornadas Argentinas de Informática (JAIIO). 12º Congreso Argentino de AgroInformática (CAI). Modalidad virtual, 19 al 30 de Octubre de 2020
Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.
Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Córdoba, Mariano Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.
La información sobre la distribución de la materia orgánica (MO) a escala fina es clave no solo para el manejo de la fertilidad del suelo sino también para estimar la reserva de carbono orgánico del suelo. En este trabajo se comparan dos métodos para mapear la variabilidad de MO a escala de campo: el algoritmo de aprendizaje automático quantile regression forest (QRF) y la regresión bayesiana, estimada por INLA. Ambos métodos se aplican para estimar la relación entre MO y variables de sitio, de fácil obtención, que es usada para predecir MO en sitios no muestreados. Se emplearon 279 puntos georreferenciados de MO muestreados en tres periodos (2005, 2008 y 2011) en una superficie de 2.240 ha bajo agricultura. Para el ajuste de los modelos de regresión se utilizaron variables topográficas e índices de vegetación como variables explicativas. Los resultados sugieren que la regresión bayesiana para datos con correlación espacio-temporal supera a QRF en términos de error de predicción y mapeo de la variabilidad al menos para el tipo de condiciones topográficas y de suelos del estudio. La posibilidad de mapear la evolución del contenido de MO del suelo a esta escala representa un avance para el monitoreo de la sustentabilidad. Los mapas de variabilidad espacial de la MO a escala de campo pueden ser usados para monitorear el efecto de diferentes prácticas de manejo de suelos o como alertas de medidas de manejo que incrementen la entrada de carbono al sistema.
Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.
Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Córdoba, Mariano Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fuente
Anales de CAI 2020. Congreso Argentino de Agroinformática (JAIIO)
ISSN 2525-0949
https://49jaiio.sadio.org.ar/Anales/Cai/Contribuciones
Materia
Fertilidad del suelo
Materia orgánica
Aprendizaje automático
Regresión bayesiana
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/28140

id RDUUNC_2f0cf03574eb48a58f6ad5259f2a1701
oai_identifier_str oai:rdu.unc.edu.ar:11086/28140
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Mapeo de materia orgánica del suelo a escala de campoCórdoba, Mariano AugustoBalzarini, Mónica GracielaFertilidad del sueloMateria orgánicaAprendizaje automáticoRegresión bayesianaPonencia presentada en las 49 Jornadas Argentinas de Informática (JAIIO). 12º Congreso Argentino de AgroInformática (CAI). Modalidad virtual, 19 al 30 de Octubre de 2020Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.Fil: Córdoba, Mariano Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.La información sobre la distribución de la materia orgánica (MO) a escala fina es clave no solo para el manejo de la fertilidad del suelo sino también para estimar la reserva de carbono orgánico del suelo. En este trabajo se comparan dos métodos para mapear la variabilidad de MO a escala de campo: el algoritmo de aprendizaje automático quantile regression forest (QRF) y la regresión bayesiana, estimada por INLA. Ambos métodos se aplican para estimar la relación entre MO y variables de sitio, de fácil obtención, que es usada para predecir MO en sitios no muestreados. Se emplearon 279 puntos georreferenciados de MO muestreados en tres periodos (2005, 2008 y 2011) en una superficie de 2.240 ha bajo agricultura. Para el ajuste de los modelos de regresión se utilizaron variables topográficas e índices de vegetación como variables explicativas. Los resultados sugieren que la regresión bayesiana para datos con correlación espacio-temporal supera a QRF en términos de error de predicción y mapeo de la variabilidad al menos para el tipo de condiciones topográficas y de suelos del estudio. La posibilidad de mapear la evolución del contenido de MO del suelo a esta escala representa un avance para el monitoreo de la sustentabilidad. Los mapas de variabilidad espacial de la MO a escala de campo pueden ser usados para monitorear el efecto de diferentes prácticas de manejo de suelos o como alertas de medidas de manejo que incrementen la entrada de carbono al sistema.Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.Fil: Córdoba, Mariano Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.2020info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/11086/28140Anales de CAI 2020. Congreso Argentino de Agroinformática (JAIIO)ISSN 2525-0949https://49jaiio.sadio.org.ar/Anales/Cai/Contribucionesreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNCspainfo:eu-repo/semantics/openAccess2025-09-04T12:32:44Zoai:rdu.unc.edu.ar:11086/28140Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:32:44.974Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Mapeo de materia orgánica del suelo a escala de campo
title Mapeo de materia orgánica del suelo a escala de campo
spellingShingle Mapeo de materia orgánica del suelo a escala de campo
Córdoba, Mariano Augusto
Fertilidad del suelo
Materia orgánica
Aprendizaje automático
Regresión bayesiana
title_short Mapeo de materia orgánica del suelo a escala de campo
title_full Mapeo de materia orgánica del suelo a escala de campo
title_fullStr Mapeo de materia orgánica del suelo a escala de campo
title_full_unstemmed Mapeo de materia orgánica del suelo a escala de campo
title_sort Mapeo de materia orgánica del suelo a escala de campo
dc.creator.none.fl_str_mv Córdoba, Mariano Augusto
Balzarini, Mónica Graciela
author Córdoba, Mariano Augusto
author_facet Córdoba, Mariano Augusto
Balzarini, Mónica Graciela
author_role author
author2 Balzarini, Mónica Graciela
author2_role author
dc.subject.none.fl_str_mv Fertilidad del suelo
Materia orgánica
Aprendizaje automático
Regresión bayesiana
topic Fertilidad del suelo
Materia orgánica
Aprendizaje automático
Regresión bayesiana
dc.description.none.fl_txt_mv Ponencia presentada en las 49 Jornadas Argentinas de Informática (JAIIO). 12º Congreso Argentino de AgroInformática (CAI). Modalidad virtual, 19 al 30 de Octubre de 2020
Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.
Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Córdoba, Mariano Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.
La información sobre la distribución de la materia orgánica (MO) a escala fina es clave no solo para el manejo de la fertilidad del suelo sino también para estimar la reserva de carbono orgánico del suelo. En este trabajo se comparan dos métodos para mapear la variabilidad de MO a escala de campo: el algoritmo de aprendizaje automático quantile regression forest (QRF) y la regresión bayesiana, estimada por INLA. Ambos métodos se aplican para estimar la relación entre MO y variables de sitio, de fácil obtención, que es usada para predecir MO en sitios no muestreados. Se emplearon 279 puntos georreferenciados de MO muestreados en tres periodos (2005, 2008 y 2011) en una superficie de 2.240 ha bajo agricultura. Para el ajuste de los modelos de regresión se utilizaron variables topográficas e índices de vegetación como variables explicativas. Los resultados sugieren que la regresión bayesiana para datos con correlación espacio-temporal supera a QRF en términos de error de predicción y mapeo de la variabilidad al menos para el tipo de condiciones topográficas y de suelos del estudio. La posibilidad de mapear la evolución del contenido de MO del suelo a esta escala representa un avance para el monitoreo de la sustentabilidad. Los mapas de variabilidad espacial de la MO a escala de campo pueden ser usados para monitorear el efecto de diferentes prácticas de manejo de suelos o como alertas de medidas de manejo que incrementen la entrada de carbono al sistema.
Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.
Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Córdoba, Mariano Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.
Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina.
Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina.
description Ponencia presentada en las 49 Jornadas Argentinas de Informática (JAIIO). 12º Congreso Argentino de AgroInformática (CAI). Modalidad virtual, 19 al 30 de Octubre de 2020
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/28140
url http://hdl.handle.net/11086/28140
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Anales de CAI 2020. Congreso Argentino de Agroinformática (JAIIO)
ISSN 2525-0949
https://49jaiio.sadio.org.ar/Anales/Cai/Contribuciones
reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1842349646824865792
score 13.13397