Representaciones globales para cuasivariedades de congruencias relativas distributivas
- Autores
- Schilman, Mauro
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Vaggione, Diego José
- Descripción
- Los productos subdirectos globales preservan sentencias de la forma "para todo existe único conjunción de p=q". Esta clase de sentencias permite expresar resultados interesantes (como el teorema de Nachbin, entre otros) lo cual motiva la búsqueda de una clase de factores sencilla para representar toda álgebra de cierta clase como producto subdirecto global de algunos de ellos. Hasta el momento sólo se conocían representaciones globales mediante factores indescomponibles de ciertas variedades, no así de cuasivariedades. Este trabajo consiste en: un estudio preliminar de los conceptos básicos del álgebra universal involucrados y de algunas variedades y cuasivariedades particulares, una exposición de la dualidad de Priestley, el compilado de algunos teoremas centrales y el análisis de representaciones globales de variedades, la generalización de dichos teoremas para cuasivariedades y la presentación de representaciones globales halladas para un par de casos particulares de las mismas.
- Materia
- Lógica matemática
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/2776
Ver los metadatos del registro completo
id |
RDUUNC_08e38da248f0df9d7a8d9744002dd08c |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/2776 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Representaciones globales para cuasivariedades de congruencias relativas distributivasSchilman, MauroLógica matemáticaLos productos subdirectos globales preservan sentencias de la forma "para todo existe único conjunción de p=q". Esta clase de sentencias permite expresar resultados interesantes (como el teorema de Nachbin, entre otros) lo cual motiva la búsqueda de una clase de factores sencilla para representar toda álgebra de cierta clase como producto subdirecto global de algunos de ellos. Hasta el momento sólo se conocían representaciones globales mediante factores indescomponibles de ciertas variedades, no así de cuasivariedades. Este trabajo consiste en: un estudio preliminar de los conceptos básicos del álgebra universal involucrados y de algunas variedades y cuasivariedades particulares, una exposición de la dualidad de Priestley, el compilado de algunos teoremas centrales y el análisis de representaciones globales de variedades, la generalización de dichos teoremas para cuasivariedades y la presentación de representaciones globales halladas para un par de casos particulares de las mismas.Vaggione, Diego José2015info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://hdl.handle.net/11086/2776spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-10-16T09:29:25Zoai:rdu.unc.edu.ar:11086/2776Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-10-16 09:29:26.04Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Representaciones globales para cuasivariedades de congruencias relativas distributivas |
title |
Representaciones globales para cuasivariedades de congruencias relativas distributivas |
spellingShingle |
Representaciones globales para cuasivariedades de congruencias relativas distributivas Schilman, Mauro Lógica matemática |
title_short |
Representaciones globales para cuasivariedades de congruencias relativas distributivas |
title_full |
Representaciones globales para cuasivariedades de congruencias relativas distributivas |
title_fullStr |
Representaciones globales para cuasivariedades de congruencias relativas distributivas |
title_full_unstemmed |
Representaciones globales para cuasivariedades de congruencias relativas distributivas |
title_sort |
Representaciones globales para cuasivariedades de congruencias relativas distributivas |
dc.creator.none.fl_str_mv |
Schilman, Mauro |
author |
Schilman, Mauro |
author_facet |
Schilman, Mauro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vaggione, Diego José |
dc.subject.none.fl_str_mv |
Lógica matemática |
topic |
Lógica matemática |
dc.description.none.fl_txt_mv |
Los productos subdirectos globales preservan sentencias de la forma "para todo existe único conjunción de p=q". Esta clase de sentencias permite expresar resultados interesantes (como el teorema de Nachbin, entre otros) lo cual motiva la búsqueda de una clase de factores sencilla para representar toda álgebra de cierta clase como producto subdirecto global de algunos de ellos. Hasta el momento sólo se conocían representaciones globales mediante factores indescomponibles de ciertas variedades, no así de cuasivariedades. Este trabajo consiste en: un estudio preliminar de los conceptos básicos del álgebra universal involucrados y de algunas variedades y cuasivariedades particulares, una exposición de la dualidad de Priestley, el compilado de algunos teoremas centrales y el análisis de representaciones globales de variedades, la generalización de dichos teoremas para cuasivariedades y la presentación de representaciones globales halladas para un par de casos particulares de las mismas. |
description |
Los productos subdirectos globales preservan sentencias de la forma "para todo existe único conjunción de p=q". Esta clase de sentencias permite expresar resultados interesantes (como el teorema de Nachbin, entre otros) lo cual motiva la búsqueda de una clase de factores sencilla para representar toda álgebra de cierta clase como producto subdirecto global de algunos de ellos. Hasta el momento sólo se conocían representaciones globales mediante factores indescomponibles de ciertas variedades, no así de cuasivariedades. Este trabajo consiste en: un estudio preliminar de los conceptos básicos del álgebra universal involucrados y de algunas variedades y cuasivariedades particulares, una exposición de la dualidad de Priestley, el compilado de algunos teoremas centrales y el análisis de representaciones globales de variedades, la generalización de dichos teoremas para cuasivariedades y la presentación de representaciones globales halladas para un par de casos particulares de las mismas. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/2776 |
url |
http://hdl.handle.net/11086/2776 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1846143356255600640 |
score |
12.712165 |