Representaciones globales para cuasivariedades de congruencias relativas distributivas

Autores
Schilman, Mauro
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión publicada
Colaborador/a o director/a de tesis
Vaggione, Diego José
Descripción
Los productos subdirectos globales preservan sentencias de la forma "para todo existe único conjunción de p=q". Esta clase de sentencias permite expresar resultados interesantes (como el teorema de Nachbin, entre otros) lo cual motiva la búsqueda de una clase de factores sencilla para representar toda álgebra de cierta clase como producto subdirecto global de algunos de ellos. Hasta el momento sólo se conocían representaciones globales mediante factores indescomponibles de ciertas variedades, no así de cuasivariedades. Este trabajo consiste en: un estudio preliminar de los conceptos básicos del álgebra universal involucrados y de algunas variedades y cuasivariedades particulares, una exposición de la dualidad de Priestley, el compilado de algunos teoremas centrales y el análisis de representaciones globales de variedades, la generalización de dichos teoremas para cuasivariedades y la presentación de representaciones globales halladas para un par de casos particulares de las mismas.
Materia
Lógica matemática
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/2776

id RDUUNC_08e38da248f0df9d7a8d9744002dd08c
oai_identifier_str oai:rdu.unc.edu.ar:11086/2776
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Representaciones globales para cuasivariedades de congruencias relativas distributivasSchilman, MauroLógica matemáticaLos productos subdirectos globales preservan sentencias de la forma "para todo existe único conjunción de p=q". Esta clase de sentencias permite expresar resultados interesantes (como el teorema de Nachbin, entre otros) lo cual motiva la búsqueda de una clase de factores sencilla para representar toda álgebra de cierta clase como producto subdirecto global de algunos de ellos. Hasta el momento sólo se conocían representaciones globales mediante factores indescomponibles de ciertas variedades, no así de cuasivariedades. Este trabajo consiste en: un estudio preliminar de los conceptos básicos del álgebra universal involucrados y de algunas variedades y cuasivariedades particulares, una exposición de la dualidad de Priestley, el compilado de algunos teoremas centrales y el análisis de representaciones globales de variedades, la generalización de dichos teoremas para cuasivariedades y la presentación de representaciones globales halladas para un par de casos particulares de las mismas.Vaggione, Diego José2015info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://hdl.handle.net/11086/2776spainfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-10-16T09:29:25Zoai:rdu.unc.edu.ar:11086/2776Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-10-16 09:29:26.04Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Representaciones globales para cuasivariedades de congruencias relativas distributivas
title Representaciones globales para cuasivariedades de congruencias relativas distributivas
spellingShingle Representaciones globales para cuasivariedades de congruencias relativas distributivas
Schilman, Mauro
Lógica matemática
title_short Representaciones globales para cuasivariedades de congruencias relativas distributivas
title_full Representaciones globales para cuasivariedades de congruencias relativas distributivas
title_fullStr Representaciones globales para cuasivariedades de congruencias relativas distributivas
title_full_unstemmed Representaciones globales para cuasivariedades de congruencias relativas distributivas
title_sort Representaciones globales para cuasivariedades de congruencias relativas distributivas
dc.creator.none.fl_str_mv Schilman, Mauro
author Schilman, Mauro
author_facet Schilman, Mauro
author_role author
dc.contributor.none.fl_str_mv Vaggione, Diego José
dc.subject.none.fl_str_mv Lógica matemática
topic Lógica matemática
dc.description.none.fl_txt_mv Los productos subdirectos globales preservan sentencias de la forma "para todo existe único conjunción de p=q". Esta clase de sentencias permite expresar resultados interesantes (como el teorema de Nachbin, entre otros) lo cual motiva la búsqueda de una clase de factores sencilla para representar toda álgebra de cierta clase como producto subdirecto global de algunos de ellos. Hasta el momento sólo se conocían representaciones globales mediante factores indescomponibles de ciertas variedades, no así de cuasivariedades. Este trabajo consiste en: un estudio preliminar de los conceptos básicos del álgebra universal involucrados y de algunas variedades y cuasivariedades particulares, una exposición de la dualidad de Priestley, el compilado de algunos teoremas centrales y el análisis de representaciones globales de variedades, la generalización de dichos teoremas para cuasivariedades y la presentación de representaciones globales halladas para un par de casos particulares de las mismas.
description Los productos subdirectos globales preservan sentencias de la forma "para todo existe único conjunción de p=q". Esta clase de sentencias permite expresar resultados interesantes (como el teorema de Nachbin, entre otros) lo cual motiva la búsqueda de una clase de factores sencilla para representar toda álgebra de cierta clase como producto subdirecto global de algunos de ellos. Hasta el momento sólo se conocían representaciones globales mediante factores indescomponibles de ciertas variedades, no así de cuasivariedades. Este trabajo consiste en: un estudio preliminar de los conceptos básicos del álgebra universal involucrados y de algunas variedades y cuasivariedades particulares, una exposición de la dualidad de Priestley, el compilado de algunos teoremas centrales y el análisis de representaciones globales de variedades, la generalización de dichos teoremas para cuasivariedades y la presentación de representaciones globales halladas para un par de casos particulares de las mismas.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/2776
url http://hdl.handle.net/11086/2776
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1846143356255600640
score 12.712165