Perfect bayesian equilibrium in Kuhn poker
- Autores
- Diez, Juan Cruz; Loriente, Martín Iñaki
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- tesis de grado
- Estado
- versión corregida
- Colaborador/a o director/a de tesis
- Quesada, Lucía
Ruzzier, Christian - Descripción
- Fil: Diez, Juan Cruz. Universidad de San Andrés. Departamento de Economía; Argentina.
Fil: Loriente, Martín Iñaki. Universidad de San Andrés. Departamento de Economía; Argentina.
In 1950, Harold W. Kuhn introduced a simplified version of poker referred to as Kuhn Poker and solved it using the notion of Nash Equilibrium. His pioneering work inspired subsequent scholars who applied similar methodologies to other poker versions. In contrast, we adopt a different procedure by employing Harsanyi’s approach to reach a Perfect Bayesian Equilibrium (PBE), a concept that emerged two decades after Kuhn’s original solutions. While computational techniques have greatly advanced the analysis of various poker variations, achieving a PBE remains elusive. Some studies suffer from methodological flaws, as they overlook the importance of incorporating beliefs into their analysis. In our research, we also conducted a rationality study and found that relaxing the sophistication of a player leads to a shift in optimal strategies towards more exploitative ones. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad de San Andrés
- OAI Identificador
- oai:repositorio.udesa.edu.ar:10908/23530
Ver los metadatos del registro completo
id |
RDUDESA_6dfcd4de2b035d7493ea53174446f344 |
---|---|
oai_identifier_str |
oai:repositorio.udesa.edu.ar:10908/23530 |
network_acronym_str |
RDUDESA |
repository_id_str |
2363 |
network_name_str |
Repositorio Digital San Andrés (UdeSa) |
spelling |
Perfect bayesian equilibrium in Kuhn pokerDiez, Juan CruzLoriente, Martín IñakiFil: Diez, Juan Cruz. Universidad de San Andrés. Departamento de Economía; Argentina.Fil: Loriente, Martín Iñaki. Universidad de San Andrés. Departamento de Economía; Argentina.In 1950, Harold W. Kuhn introduced a simplified version of poker referred to as Kuhn Poker and solved it using the notion of Nash Equilibrium. His pioneering work inspired subsequent scholars who applied similar methodologies to other poker versions. In contrast, we adopt a different procedure by employing Harsanyi’s approach to reach a Perfect Bayesian Equilibrium (PBE), a concept that emerged two decades after Kuhn’s original solutions. While computational techniques have greatly advanced the analysis of various poker variations, achieving a PBE remains elusive. Some studies suffer from methodological flaws, as they overlook the importance of incorporating beliefs into their analysis. In our research, we also conducted a rationality study and found that relaxing the sophistication of a player leads to a shift in optimal strategies towards more exploitative ones.Universidad de San Andrés. Departamento de EconomíaQuesada, LucíaRuzzier, Christian2024-01-18T19:30:38Z2024-01-18T19:30:38Z2023-10Tesisinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/updatedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfapplication/pdfDiez, J. C. y Loriente, M. I. (2023). Perfect bayesian equilibrium in Kuhn poker. [Tesis de grado, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/23530http://hdl.handle.net/10908/23530enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Digital San Andrés (UdeSa)instname:Universidad de San Andrés2025-09-29T14:30:07Zoai:repositorio.udesa.edu.ar:10908/23530instacron:Universidad de San AndrésInstitucionalhttp://repositorio.udesa.edu.ar/jspui/Universidad privadaNo correspondehttp://repositorio.udesa.edu.ar/oai/requestmsanroman@udesa.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:23632025-09-29 14:30:08.277Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrésfalse |
dc.title.none.fl_str_mv |
Perfect bayesian equilibrium in Kuhn poker |
title |
Perfect bayesian equilibrium in Kuhn poker |
spellingShingle |
Perfect bayesian equilibrium in Kuhn poker Diez, Juan Cruz |
title_short |
Perfect bayesian equilibrium in Kuhn poker |
title_full |
Perfect bayesian equilibrium in Kuhn poker |
title_fullStr |
Perfect bayesian equilibrium in Kuhn poker |
title_full_unstemmed |
Perfect bayesian equilibrium in Kuhn poker |
title_sort |
Perfect bayesian equilibrium in Kuhn poker |
dc.creator.none.fl_str_mv |
Diez, Juan Cruz Loriente, Martín Iñaki |
author |
Diez, Juan Cruz |
author_facet |
Diez, Juan Cruz Loriente, Martín Iñaki |
author_role |
author |
author2 |
Loriente, Martín Iñaki |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Quesada, Lucía Ruzzier, Christian |
dc.description.none.fl_txt_mv |
Fil: Diez, Juan Cruz. Universidad de San Andrés. Departamento de Economía; Argentina. Fil: Loriente, Martín Iñaki. Universidad de San Andrés. Departamento de Economía; Argentina. In 1950, Harold W. Kuhn introduced a simplified version of poker referred to as Kuhn Poker and solved it using the notion of Nash Equilibrium. His pioneering work inspired subsequent scholars who applied similar methodologies to other poker versions. In contrast, we adopt a different procedure by employing Harsanyi’s approach to reach a Perfect Bayesian Equilibrium (PBE), a concept that emerged two decades after Kuhn’s original solutions. While computational techniques have greatly advanced the analysis of various poker variations, achieving a PBE remains elusive. Some studies suffer from methodological flaws, as they overlook the importance of incorporating beliefs into their analysis. In our research, we also conducted a rationality study and found that relaxing the sophistication of a player leads to a shift in optimal strategies towards more exploitative ones. |
description |
Fil: Diez, Juan Cruz. Universidad de San Andrés. Departamento de Economía; Argentina. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 2024-01-18T19:30:38Z 2024-01-18T19:30:38Z |
dc.type.none.fl_str_mv |
Tesis info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/updatedVersion http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
updatedVersion |
dc.identifier.none.fl_str_mv |
Diez, J. C. y Loriente, M. I. (2023). Perfect bayesian equilibrium in Kuhn poker. [Tesis de grado, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/23530 http://hdl.handle.net/10908/23530 |
identifier_str_mv |
Diez, J. C. y Loriente, M. I. (2023). Perfect bayesian equilibrium in Kuhn poker. [Tesis de grado, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/23530 |
url |
http://hdl.handle.net/10908/23530 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de San Andrés. Departamento de Economía |
publisher.none.fl_str_mv |
Universidad de San Andrés. Departamento de Economía |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital San Andrés (UdeSa) instname:Universidad de San Andrés |
reponame_str |
Repositorio Digital San Andrés (UdeSa) |
collection |
Repositorio Digital San Andrés (UdeSa) |
instname_str |
Universidad de San Andrés |
repository.name.fl_str_mv |
Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrés |
repository.mail.fl_str_mv |
msanroman@udesa.edu.ar |
_version_ |
1844621887019155456 |
score |
12.559606 |