Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
- Autores
- Ballestero, Gonzalo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- tesis de maestría
- Estado
- versión corregida
- Colaborador/a o director/a de tesis
- Quesada, Lucía
- Descripción
- Fil: Ballestero, Gonzalo. Universidad de San Andrés. Departamento de Economía; Argentina.
Firms increasingly delegate their strategic decisions to algorithms. A potential concern is that algorithms may undermine competition by leading to pricing outcomes that are collusive, even without having been designed to do so. This paper investigates whether Q-learning algorithms can learn to collude in a setting with sequential price competition and stochastic marginal costs adapted from Maskin and Tirole (1988). By extending a previous model developed in Klein (2021), I find that sequential Q-learning algorithms leads to supracompetitive profits despite they compete under uncertainty and this finding is robust to various extensions. The algorithms can coordinate on focal price equilibria or an Edgeworth cycle provided that uncertainty is not too large. However, as the market environment becomes more uncertain, price wars emerge as the only possible pricing pattern. Even though sequential Q-learning algorithms gain supracompetitive profits, uncertainty tends to make collusive outcomes more difficult to achieve.
Keywords: Competition Policy, Artificial Intelligence, Pricing Algorithms, Collusion. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad de San Andrés
- OAI Identificador
- oai:repositorio.udesa.edu.ar:10908/19655
Ver los metadatos del registro completo
id |
RDUDESA_2bba7a62f04214b89c85ddf7fff9e6ef |
---|---|
oai_identifier_str |
oai:repositorio.udesa.edu.ar:10908/19655 |
network_acronym_str |
RDUDESA |
repository_id_str |
2363 |
network_name_str |
Repositorio Digital San Andrés (UdeSa) |
spelling |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costsBallestero, GonzaloFil: Ballestero, Gonzalo. Universidad de San Andrés. Departamento de Economía; Argentina.Firms increasingly delegate their strategic decisions to algorithms. A potential concern is that algorithms may undermine competition by leading to pricing outcomes that are collusive, even without having been designed to do so. This paper investigates whether Q-learning algorithms can learn to collude in a setting with sequential price competition and stochastic marginal costs adapted from Maskin and Tirole (1988). By extending a previous model developed in Klein (2021), I find that sequential Q-learning algorithms leads to supracompetitive profits despite they compete under uncertainty and this finding is robust to various extensions. The algorithms can coordinate on focal price equilibria or an Edgeworth cycle provided that uncertainty is not too large. However, as the market environment becomes more uncertain, price wars emerge as the only possible pricing pattern. Even though sequential Q-learning algorithms gain supracompetitive profits, uncertainty tends to make collusive outcomes more difficult to achieve.Keywords: Competition Policy, Artificial Intelligence, Pricing Algorithms, Collusion.Universidad de San Andrés. Departamento de EconomíaQuesada, Lucía7/28/2022 14:10Z7/28/2022 14:10Z2021-11Tesisinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/updatedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfapplication/pdfBallestero, G. (2021). Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/19655http://hdl.handle.net/10908/19655enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Digital San Andrés (UdeSa)instname:Universidad de San Andrés2025-10-16T10:12:02Zoai:repositorio.udesa.edu.ar:10908/19655instacron:Universidad de San AndrésInstitucionalhttp://repositorio.udesa.edu.ar/jspui/Universidad privadaNo correspondehttp://repositorio.udesa.edu.ar/oai/requestmsanroman@udesa.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:23632025-10-16 10:12:03.088Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrésfalse |
dc.title.none.fl_str_mv |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs |
title |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs |
spellingShingle |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs Ballestero, Gonzalo |
title_short |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs |
title_full |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs |
title_fullStr |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs |
title_full_unstemmed |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs |
title_sort |
Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs |
dc.creator.none.fl_str_mv |
Ballestero, Gonzalo |
author |
Ballestero, Gonzalo |
author_facet |
Ballestero, Gonzalo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Quesada, Lucía |
dc.description.none.fl_txt_mv |
Fil: Ballestero, Gonzalo. Universidad de San Andrés. Departamento de Economía; Argentina. Firms increasingly delegate their strategic decisions to algorithms. A potential concern is that algorithms may undermine competition by leading to pricing outcomes that are collusive, even without having been designed to do so. This paper investigates whether Q-learning algorithms can learn to collude in a setting with sequential price competition and stochastic marginal costs adapted from Maskin and Tirole (1988). By extending a previous model developed in Klein (2021), I find that sequential Q-learning algorithms leads to supracompetitive profits despite they compete under uncertainty and this finding is robust to various extensions. The algorithms can coordinate on focal price equilibria or an Edgeworth cycle provided that uncertainty is not too large. However, as the market environment becomes more uncertain, price wars emerge as the only possible pricing pattern. Even though sequential Q-learning algorithms gain supracompetitive profits, uncertainty tends to make collusive outcomes more difficult to achieve. Keywords: Competition Policy, Artificial Intelligence, Pricing Algorithms, Collusion. |
description |
Fil: Ballestero, Gonzalo. Universidad de San Andrés. Departamento de Economía; Argentina. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 7/28/2022 14:10Z 7/28/2022 14:10Z |
dc.type.none.fl_str_mv |
Tesis info:eu-repo/semantics/masterThesis info:eu-repo/semantics/updatedVersion http://purl.org/coar/resource_type/c_bdcc info:ar-repo/semantics/tesisDeMaestria |
format |
masterThesis |
status_str |
updatedVersion |
dc.identifier.none.fl_str_mv |
Ballestero, G. (2021). Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/19655 http://hdl.handle.net/10908/19655 |
identifier_str_mv |
Ballestero, G. (2021). Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/19655 |
url |
http://hdl.handle.net/10908/19655 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de San Andrés. Departamento de Economía |
publisher.none.fl_str_mv |
Universidad de San Andrés. Departamento de Economía |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital San Andrés (UdeSa) instname:Universidad de San Andrés |
reponame_str |
Repositorio Digital San Andrés (UdeSa) |
collection |
Repositorio Digital San Andrés (UdeSa) |
instname_str |
Universidad de San Andrés |
repository.name.fl_str_mv |
Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrés |
repository.mail.fl_str_mv |
msanroman@udesa.edu.ar |
_version_ |
1846146190391902208 |
score |
12.712165 |