Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs

Autores
Ballestero, Gonzalo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
tesis de maestría
Estado
versión corregida
Colaborador/a o director/a de tesis
Quesada, Lucía
Descripción
Fil: Ballestero, Gonzalo. Universidad de San Andrés. Departamento de Economía; Argentina.
Firms increasingly delegate their strategic decisions to algorithms. A potential concern is that algorithms may undermine competition by leading to pricing outcomes that are collusive, even without having been designed to do so. This paper investigates whether Q-learning algorithms can learn to collude in a setting with sequential price competition and stochastic marginal costs adapted from Maskin and Tirole (1988). By extending a previous model developed in Klein (2021), I find that sequential Q-learning algorithms leads to supracompetitive profits despite they compete under uncertainty and this finding is robust to various extensions. The algorithms can coordinate on focal price equilibria or an Edgeworth cycle provided that uncertainty is not too large. However, as the market environment becomes more uncertain, price wars emerge as the only possible pricing pattern. Even though sequential Q-learning algorithms gain supracompetitive profits, uncertainty tends to make collusive outcomes more difficult to achieve.
Keywords: Competition Policy, Artificial Intelligence, Pricing Algorithms, Collusion.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Digital San Andrés (UdeSa)
Institución
Universidad de San Andrés
OAI Identificador
oai:repositorio.udesa.edu.ar:10908/19655

id RDUDESA_2bba7a62f04214b89c85ddf7fff9e6ef
oai_identifier_str oai:repositorio.udesa.edu.ar:10908/19655
network_acronym_str RDUDESA
repository_id_str 2363
network_name_str Repositorio Digital San Andrés (UdeSa)
spelling Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costsBallestero, GonzaloFil: Ballestero, Gonzalo. Universidad de San Andrés. Departamento de Economía; Argentina.Firms increasingly delegate their strategic decisions to algorithms. A potential concern is that algorithms may undermine competition by leading to pricing outcomes that are collusive, even without having been designed to do so. This paper investigates whether Q-learning algorithms can learn to collude in a setting with sequential price competition and stochastic marginal costs adapted from Maskin and Tirole (1988). By extending a previous model developed in Klein (2021), I find that sequential Q-learning algorithms leads to supracompetitive profits despite they compete under uncertainty and this finding is robust to various extensions. The algorithms can coordinate on focal price equilibria or an Edgeworth cycle provided that uncertainty is not too large. However, as the market environment becomes more uncertain, price wars emerge as the only possible pricing pattern. Even though sequential Q-learning algorithms gain supracompetitive profits, uncertainty tends to make collusive outcomes more difficult to achieve.Keywords: Competition Policy, Artificial Intelligence, Pricing Algorithms, Collusion.Universidad de San Andrés. Departamento de EconomíaQuesada, Lucía7/28/2022 14:10Z7/28/2022 14:10Z2021-11Tesisinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/updatedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfapplication/pdfBallestero, G. (2021). Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/19655http://hdl.handle.net/10908/19655enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Digital San Andrés (UdeSa)instname:Universidad de San Andrés2025-10-16T10:12:02Zoai:repositorio.udesa.edu.ar:10908/19655instacron:Universidad de San AndrésInstitucionalhttp://repositorio.udesa.edu.ar/jspui/Universidad privadaNo correspondehttp://repositorio.udesa.edu.ar/oai/requestmsanroman@udesa.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:23632025-10-16 10:12:03.088Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrésfalse
dc.title.none.fl_str_mv Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
title Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
spellingShingle Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
Ballestero, Gonzalo
title_short Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
title_full Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
title_fullStr Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
title_full_unstemmed Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
title_sort Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs
dc.creator.none.fl_str_mv Ballestero, Gonzalo
author Ballestero, Gonzalo
author_facet Ballestero, Gonzalo
author_role author
dc.contributor.none.fl_str_mv Quesada, Lucía
dc.description.none.fl_txt_mv Fil: Ballestero, Gonzalo. Universidad de San Andrés. Departamento de Economía; Argentina.
Firms increasingly delegate their strategic decisions to algorithms. A potential concern is that algorithms may undermine competition by leading to pricing outcomes that are collusive, even without having been designed to do so. This paper investigates whether Q-learning algorithms can learn to collude in a setting with sequential price competition and stochastic marginal costs adapted from Maskin and Tirole (1988). By extending a previous model developed in Klein (2021), I find that sequential Q-learning algorithms leads to supracompetitive profits despite they compete under uncertainty and this finding is robust to various extensions. The algorithms can coordinate on focal price equilibria or an Edgeworth cycle provided that uncertainty is not too large. However, as the market environment becomes more uncertain, price wars emerge as the only possible pricing pattern. Even though sequential Q-learning algorithms gain supracompetitive profits, uncertainty tends to make collusive outcomes more difficult to achieve.
Keywords: Competition Policy, Artificial Intelligence, Pricing Algorithms, Collusion.
description Fil: Ballestero, Gonzalo. Universidad de San Andrés. Departamento de Economía; Argentina.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
7/28/2022 14:10Z
7/28/2022 14:10Z
dc.type.none.fl_str_mv Tesis
info:eu-repo/semantics/masterThesis
info:eu-repo/semantics/updatedVersion
http://purl.org/coar/resource_type/c_bdcc
info:ar-repo/semantics/tesisDeMaestria
format masterThesis
status_str updatedVersion
dc.identifier.none.fl_str_mv Ballestero, G. (2021). Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/19655
http://hdl.handle.net/10908/19655
identifier_str_mv Ballestero, G. (2021). Collusion and artificial intelligence : a computational experiment with sequential pricing algorithms under stochastic costs. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/19655
url http://hdl.handle.net/10908/19655
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de San Andrés. Departamento de Economía
publisher.none.fl_str_mv Universidad de San Andrés. Departamento de Economía
dc.source.none.fl_str_mv reponame:Repositorio Digital San Andrés (UdeSa)
instname:Universidad de San Andrés
reponame_str Repositorio Digital San Andrés (UdeSa)
collection Repositorio Digital San Andrés (UdeSa)
instname_str Universidad de San Andrés
repository.name.fl_str_mv Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrés
repository.mail.fl_str_mv msanroman@udesa.edu.ar
_version_ 1846146190391902208
score 12.712165