Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method

Autores
Bohman, Brian J.; Culshaw-Maurer, Michael; Abdallah, Feriel Ben; Giletto, Claudia; Bélanger, Gilles; Fernández, Fabián G.; Miao, Yuxin; Mulla, David J.; Rosen, Carl J.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions.
EEA Balcarce
Fil: Bohman, Brian J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Culshaw-Maurer, Michael J. University of Arizona. CyVerse; Estados Unidos.
Fil: Abdallah, Feriel Ben. Walloon Agricultural Research Centre. Productions in Agriculture Department, Crop Production Unit, Bélgica.
Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Unidad Integrada Balcarce. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Bélanger, Gilles. Science and Technology Branch, Agriculture and Agri-Food Canada; Canadá.
Fil: Fernández, Fabián G. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Miao, Yuxin. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Mulla, David J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Rosen, Carl J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fuente
European Journal of Agronomy 144 : 126744 (March 2023)
Materia
Nitrógeno
Papa
Eficiencia en el Uso de Nutrientes
Concentración
Métodos Estadísticos
Nitrogen
Potatoes
Nutrient Use Efficiency
Concentrating
Statistical Methods
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/14366

id INTADig_fc866a1e3155992fbb2ff2ecd9ea60ca
oai_identifier_str oai:localhost:20.500.12123/14366
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical methodBohman, Brian J.Culshaw-Maurer, MichaelAbdallah, Feriel BenGiletto, ClaudiaBélanger, GillesFernández, Fabián G.Miao, YuxinMulla, David J.Rosen, Carl J.NitrógenoPapaEficiencia en el Uso de NutrientesConcentraciónMétodos EstadísticosNitrogenPotatoesNutrient Use EfficiencyConcentratingStatistical MethodsMultiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions.EEA BalcarceFil: Bohman, Brian J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Fil: Culshaw-Maurer, Michael J. University of Arizona. CyVerse; Estados Unidos.Fil: Abdallah, Feriel Ben. Walloon Agricultural Research Centre. Productions in Agriculture Department, Crop Production Unit, Bélgica.Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Unidad Integrada Balcarce. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Bélanger, Gilles. Science and Technology Branch, Agriculture and Agri-Food Canada; Canadá.Fil: Fernández, Fabián G. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Fil: Miao, Yuxin. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Fil: Mulla, David J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Fil: Rosen, Carl J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Elsevier2023-03-30T12:01:17Z2023-03-30T12:01:17Z2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14366https://www.sciencedirect.com/science/article/pii/S11610301230001261161-0301(print)1873-7331(online)https://doi.org/10.1016/j.eja.2023.126744European Journal of Agronomy 144 : 126744 (March 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:08Zoai:localhost:20.500.12123/14366instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:08.901INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
title Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
spellingShingle Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
Bohman, Brian J.
Nitrógeno
Papa
Eficiencia en el Uso de Nutrientes
Concentración
Métodos Estadísticos
Nitrogen
Potatoes
Nutrient Use Efficiency
Concentrating
Statistical Methods
title_short Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
title_full Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
title_fullStr Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
title_full_unstemmed Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
title_sort Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
dc.creator.none.fl_str_mv Bohman, Brian J.
Culshaw-Maurer, Michael
Abdallah, Feriel Ben
Giletto, Claudia
Bélanger, Gilles
Fernández, Fabián G.
Miao, Yuxin
Mulla, David J.
Rosen, Carl J.
author Bohman, Brian J.
author_facet Bohman, Brian J.
Culshaw-Maurer, Michael
Abdallah, Feriel Ben
Giletto, Claudia
Bélanger, Gilles
Fernández, Fabián G.
Miao, Yuxin
Mulla, David J.
Rosen, Carl J.
author_role author
author2 Culshaw-Maurer, Michael
Abdallah, Feriel Ben
Giletto, Claudia
Bélanger, Gilles
Fernández, Fabián G.
Miao, Yuxin
Mulla, David J.
Rosen, Carl J.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Nitrógeno
Papa
Eficiencia en el Uso de Nutrientes
Concentración
Métodos Estadísticos
Nitrogen
Potatoes
Nutrient Use Efficiency
Concentrating
Statistical Methods
topic Nitrógeno
Papa
Eficiencia en el Uso de Nutrientes
Concentración
Métodos Estadísticos
Nitrogen
Potatoes
Nutrient Use Efficiency
Concentrating
Statistical Methods
dc.description.none.fl_txt_mv Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions.
EEA Balcarce
Fil: Bohman, Brian J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Culshaw-Maurer, Michael J. University of Arizona. CyVerse; Estados Unidos.
Fil: Abdallah, Feriel Ben. Walloon Agricultural Research Centre. Productions in Agriculture Department, Crop Production Unit, Bélgica.
Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Unidad Integrada Balcarce. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Bélanger, Gilles. Science and Technology Branch, Agriculture and Agri-Food Canada; Canadá.
Fil: Fernández, Fabián G. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Miao, Yuxin. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Mulla, David J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Rosen, Carl J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
description Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-30T12:01:17Z
2023-03-30T12:01:17Z
2023-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/14366
https://www.sciencedirect.com/science/article/pii/S1161030123000126
1161-0301(print)
1873-7331(online)
https://doi.org/10.1016/j.eja.2023.126744
url http://hdl.handle.net/20.500.12123/14366
https://www.sciencedirect.com/science/article/pii/S1161030123000126
https://doi.org/10.1016/j.eja.2023.126744
identifier_str_mv 1161-0301(print)
1873-7331(online)
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv European Journal of Agronomy 144 : 126744 (March 2023)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143558516473856
score 12.712165