Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method
- Autores
- Bohman, Brian J.; Culshaw-Maurer, Michael; Abdallah, Feriel Ben; Giletto, Claudia; Bélanger, Gilles; Fernández, Fabián G.; Miao, Yuxin; Mulla, David J.; Rosen, Carl J.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions.
EEA Balcarce
Fil: Bohman, Brian J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Culshaw-Maurer, Michael J. University of Arizona. CyVerse; Estados Unidos.
Fil: Abdallah, Feriel Ben. Walloon Agricultural Research Centre. Productions in Agriculture Department, Crop Production Unit, Bélgica.
Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Unidad Integrada Balcarce. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Bélanger, Gilles. Science and Technology Branch, Agriculture and Agri-Food Canada; Canadá.
Fil: Fernández, Fabián G. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Miao, Yuxin. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Mulla, David J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.
Fil: Rosen, Carl J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos. - Fuente
- European Journal of Agronomy 144 : 126744 (March 2023)
- Materia
-
Nitrógeno
Papa
Eficiencia en el Uso de Nutrientes
Concentración
Métodos Estadísticos
Nitrogen
Potatoes
Nutrient Use Efficiency
Concentrating
Statistical Methods - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/14366
Ver los metadatos del registro completo
id |
INTADig_fc866a1e3155992fbb2ff2ecd9ea60ca |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/14366 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical methodBohman, Brian J.Culshaw-Maurer, MichaelAbdallah, Feriel BenGiletto, ClaudiaBélanger, GillesFernández, Fabián G.Miao, YuxinMulla, David J.Rosen, Carl J.NitrógenoPapaEficiencia en el Uso de NutrientesConcentraciónMétodos EstadísticosNitrogenPotatoesNutrient Use EfficiencyConcentratingStatistical MethodsMultiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions.EEA BalcarceFil: Bohman, Brian J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Fil: Culshaw-Maurer, Michael J. University of Arizona. CyVerse; Estados Unidos.Fil: Abdallah, Feriel Ben. Walloon Agricultural Research Centre. Productions in Agriculture Department, Crop Production Unit, Bélgica.Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Unidad Integrada Balcarce. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Bélanger, Gilles. Science and Technology Branch, Agriculture and Agri-Food Canada; Canadá.Fil: Fernández, Fabián G. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Fil: Miao, Yuxin. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Fil: Mulla, David J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Fil: Rosen, Carl J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos.Elsevier2023-03-30T12:01:17Z2023-03-30T12:01:17Z2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14366https://www.sciencedirect.com/science/article/pii/S11610301230001261161-0301(print)1873-7331(online)https://doi.org/10.1016/j.eja.2023.126744European Journal of Agronomy 144 : 126744 (March 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:08Zoai:localhost:20.500.12123/14366instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:08.901INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method |
title |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method |
spellingShingle |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method Bohman, Brian J. Nitrógeno Papa Eficiencia en el Uso de Nutrientes Concentración Métodos Estadísticos Nitrogen Potatoes Nutrient Use Efficiency Concentrating Statistical Methods |
title_short |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method |
title_full |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method |
title_fullStr |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method |
title_full_unstemmed |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method |
title_sort |
Quantifying critical N dilution curves across G × E × M effects for potato using a partially-pooled Bayesian hierarchical method |
dc.creator.none.fl_str_mv |
Bohman, Brian J. Culshaw-Maurer, Michael Abdallah, Feriel Ben Giletto, Claudia Bélanger, Gilles Fernández, Fabián G. Miao, Yuxin Mulla, David J. Rosen, Carl J. |
author |
Bohman, Brian J. |
author_facet |
Bohman, Brian J. Culshaw-Maurer, Michael Abdallah, Feriel Ben Giletto, Claudia Bélanger, Gilles Fernández, Fabián G. Miao, Yuxin Mulla, David J. Rosen, Carl J. |
author_role |
author |
author2 |
Culshaw-Maurer, Michael Abdallah, Feriel Ben Giletto, Claudia Bélanger, Gilles Fernández, Fabián G. Miao, Yuxin Mulla, David J. Rosen, Carl J. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Nitrógeno Papa Eficiencia en el Uso de Nutrientes Concentración Métodos Estadísticos Nitrogen Potatoes Nutrient Use Efficiency Concentrating Statistical Methods |
topic |
Nitrógeno Papa Eficiencia en el Uso de Nutrientes Concentración Métodos Estadísticos Nitrogen Potatoes Nutrient Use Efficiency Concentrating Statistical Methods |
dc.description.none.fl_txt_mv |
Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions. EEA Balcarce Fil: Bohman, Brian J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos. Fil: Culshaw-Maurer, Michael J. University of Arizona. CyVerse; Estados Unidos. Fil: Abdallah, Feriel Ben. Walloon Agricultural Research Centre. Productions in Agriculture Department, Crop Production Unit, Bélgica. Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Unidad Integrada Balcarce. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Bélanger, Gilles. Science and Technology Branch, Agriculture and Agri-Food Canada; Canadá. Fil: Fernández, Fabián G. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos. Fil: Miao, Yuxin. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos. Fil: Mulla, David J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos. Fil: Rosen, Carl J. University of Minnesota. Department of Soil, Water, and Climate; Estados Unidos. |
description |
Multiple critical N dilution curves [CNDCs] have been previously developed for potato; however, attempts to directly compare differences in CNDCs across genotype [G], environment [E], and management [M] interactions have been confounded by non-uniform statistical methods, biased experimental data, and lack of proper quantification of uncertainty in the critical N concentration [%Nc]. This study implements a partially-pooled Bayesian hierarchical method to develop CNDCs for previously published and newly reported experimental data, systematically evaluates the difference in %Nc [∆%Nc] across G × E × M effects, and directly compare CNDCs from the Bayesian framework to CNDCs from conventional statistical methods. The partially-pooled Bayesian hierarchical method implemented in this study has the advantage of being less susceptible to inferential bias at the level of individual G × E × M interactions compared to alternative statistical methods that result from insufficient quantity and quality of experimental datasets (e.g., unbalanced distribution of N limiting and non-N limiting observations). This method also allows for a direct statistical comparison of differences in %Nc across levels of the G × E × M interactions. Where found to be significant, ∆%Nc was hypothesized to be related to variation in the timing of tuber initiation (e.g., maturity class) and the relative rate of tuber bulking (e.g., planting density) across G x E × M interactions. In addition to using the median value for %Nc (i.e., CNDC), the lower and upper boundary values for the credible region (i.e., CNDClo and CNDCup) derived using the Bayesian framework should be used in calculation of N nutrition index (and other calculations) to account for uncertainty in %Nc. Overall, this study provides additional evidence that%Nc is dependent upon G × E × M interactions; therefore, evaluation of crop N status or N use efficiency must account for variation in %Nc across G × E × M interactions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-30T12:01:17Z 2023-03-30T12:01:17Z 2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/14366 https://www.sciencedirect.com/science/article/pii/S1161030123000126 1161-0301(print) 1873-7331(online) https://doi.org/10.1016/j.eja.2023.126744 |
url |
http://hdl.handle.net/20.500.12123/14366 https://www.sciencedirect.com/science/article/pii/S1161030123000126 https://doi.org/10.1016/j.eja.2023.126744 |
identifier_str_mv |
1161-0301(print) 1873-7331(online) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
European Journal of Agronomy 144 : 126744 (March 2023) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143558516473856 |
score |
12.712165 |