Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization
- Autores
- Iturri, Laura Antonela; Buschiazzo, Daniel Eduardo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Agricultural loess soils of the central region of Argentina show acidification evidences linked to both climatic conditions and N-fertilization. Because of that, simulations to estimate the future acidification trends under continuing N-fertilization, considering the different neutralization capacities of the soils in this region, were performed. An equivalent number of protons to that produced by a constant application of 180 kg urea ha−1 year−1 (84 kg N ha−1 year−1) during 1, 10, 30 and 50 years of fertilization, was added to unfertilized topsoil samples of agricultural Haplustolls, Hapludolls and Argiudolls. Mostly proton additions did not modify neither CEC nor the contents of both amorphous and crystalline Al, Mn and Fe oxides. However, the Hapludolls, located in the transition zone of the climosequence, showed decreases in their phyllosilicates crystallinity with the most acidifying treatments equivalent to 30 and 50 years of N-fertilization. This effect was less pronounced in those soils placed in both the driest (Haplustolls) and the moist (Argiudolls) environments, due to the amount and composition of the substances and/or systems with acid neutralizing capacity that prevailed. Thus, the Haplustolls were the less affected soils by acidification due to their high amount of free limeand soil organic matter (SOM) as well as the smectitic mineralogy of their fine mineral fractions, clay and silt. The Argiudolls were the soils with stronger neutralizing mechanisms given by both their high SOM and fine mineral fractions contents, though illitic. Therefore, the Hapludolls were the most susceptible soils to being acidified if N-fertilization continues, according to the low quantity of SOM and fine mineral fractions of illitic mineralogy. From these results, the development and validation of mathematical models were assessed in order to predict the soil buffer capacity and the future pH of the soils. The soil buffer capacity was explained 78% by both the cation exchange and dissolution reactions of minerals accumulated in clays and silts, while pH values were explained 75% by the cation exchange capacity as well as by the SOM, free-lime and clay and silt contents. The pH that the soils would have in the future was predicted with an accuracy of 75% by the outcomes of the simulations, and in a 57% by the pH values of no-tilled and urea fertilized soils.
EEA Anguil
Fil: Iturri, Laura Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Buschiazzo, Daniel Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina - Fuente
- CATENA 171 : 565-579. (December 2018)
- Materia
-
Suelos Agrícolas
Loess
Acidificación
pH del suelo
Abonos Nitrogenados
Factores Climáticos
Agricultural Soils
Loess Soils
Acidification
Soil pH
Nitrogen Fertilizers
Climatic Factors
Soil Buffer Capacity
Ustic
Udic
Argentina - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/4415
Ver los metadatos del registro completo
id |
INTADig_f361fdd04aedf534fba9240f4793bcf8 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/4415 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilizationIturri, Laura AntonelaBuschiazzo, Daniel EduardoSuelos AgrícolasLoessAcidificaciónpH del sueloAbonos NitrogenadosFactores ClimáticosAgricultural SoilsLoess SoilsAcidificationSoil pHNitrogen FertilizersClimatic FactorsSoil Buffer CapacityUsticUdicArgentinaAgricultural loess soils of the central region of Argentina show acidification evidences linked to both climatic conditions and N-fertilization. Because of that, simulations to estimate the future acidification trends under continuing N-fertilization, considering the different neutralization capacities of the soils in this region, were performed. An equivalent number of protons to that produced by a constant application of 180 kg urea ha−1 year−1 (84 kg N ha−1 year−1) during 1, 10, 30 and 50 years of fertilization, was added to unfertilized topsoil samples of agricultural Haplustolls, Hapludolls and Argiudolls. Mostly proton additions did not modify neither CEC nor the contents of both amorphous and crystalline Al, Mn and Fe oxides. However, the Hapludolls, located in the transition zone of the climosequence, showed decreases in their phyllosilicates crystallinity with the most acidifying treatments equivalent to 30 and 50 years of N-fertilization. This effect was less pronounced in those soils placed in both the driest (Haplustolls) and the moist (Argiudolls) environments, due to the amount and composition of the substances and/or systems with acid neutralizing capacity that prevailed. Thus, the Haplustolls were the less affected soils by acidification due to their high amount of free limeand soil organic matter (SOM) as well as the smectitic mineralogy of their fine mineral fractions, clay and silt. The Argiudolls were the soils with stronger neutralizing mechanisms given by both their high SOM and fine mineral fractions contents, though illitic. Therefore, the Hapludolls were the most susceptible soils to being acidified if N-fertilization continues, according to the low quantity of SOM and fine mineral fractions of illitic mineralogy. From these results, the development and validation of mathematical models were assessed in order to predict the soil buffer capacity and the future pH of the soils. The soil buffer capacity was explained 78% by both the cation exchange and dissolution reactions of minerals accumulated in clays and silts, while pH values were explained 75% by the cation exchange capacity as well as by the SOM, free-lime and clay and silt contents. The pH that the soils would have in the future was predicted with an accuracy of 75% by the outcomes of the simulations, and in a 57% by the pH values of no-tilled and urea fertilized soils.EEA AnguilFil: Iturri, Laura Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Buschiazzo, Daniel Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaElsevier2019-02-08T15:41:48Z2019-02-08T15:41:48Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/4415https://www.sciencedirect.com/science/article/pii/S0341816218303266?via%3Dihub0341-8162https://doi.org/10.1016/j.catena.2018.08.002CATENA 171 : 565-579. (December 2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:34Zoai:localhost:20.500.12123/4415instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:34.883INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization |
title |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization |
spellingShingle |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization Iturri, Laura Antonela Suelos Agrícolas Loess Acidificación pH del suelo Abonos Nitrogenados Factores Climáticos Agricultural Soils Loess Soils Acidification Soil pH Nitrogen Fertilizers Climatic Factors Soil Buffer Capacity Ustic Udic Argentina |
title_short |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization |
title_full |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization |
title_fullStr |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization |
title_full_unstemmed |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization |
title_sort |
Agricultural loess soils along a climosequence evidenced different susceptibility to acidification by simulated N-fertilization |
dc.creator.none.fl_str_mv |
Iturri, Laura Antonela Buschiazzo, Daniel Eduardo |
author |
Iturri, Laura Antonela |
author_facet |
Iturri, Laura Antonela Buschiazzo, Daniel Eduardo |
author_role |
author |
author2 |
Buschiazzo, Daniel Eduardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Suelos Agrícolas Loess Acidificación pH del suelo Abonos Nitrogenados Factores Climáticos Agricultural Soils Loess Soils Acidification Soil pH Nitrogen Fertilizers Climatic Factors Soil Buffer Capacity Ustic Udic Argentina |
topic |
Suelos Agrícolas Loess Acidificación pH del suelo Abonos Nitrogenados Factores Climáticos Agricultural Soils Loess Soils Acidification Soil pH Nitrogen Fertilizers Climatic Factors Soil Buffer Capacity Ustic Udic Argentina |
dc.description.none.fl_txt_mv |
Agricultural loess soils of the central region of Argentina show acidification evidences linked to both climatic conditions and N-fertilization. Because of that, simulations to estimate the future acidification trends under continuing N-fertilization, considering the different neutralization capacities of the soils in this region, were performed. An equivalent number of protons to that produced by a constant application of 180 kg urea ha−1 year−1 (84 kg N ha−1 year−1) during 1, 10, 30 and 50 years of fertilization, was added to unfertilized topsoil samples of agricultural Haplustolls, Hapludolls and Argiudolls. Mostly proton additions did not modify neither CEC nor the contents of both amorphous and crystalline Al, Mn and Fe oxides. However, the Hapludolls, located in the transition zone of the climosequence, showed decreases in their phyllosilicates crystallinity with the most acidifying treatments equivalent to 30 and 50 years of N-fertilization. This effect was less pronounced in those soils placed in both the driest (Haplustolls) and the moist (Argiudolls) environments, due to the amount and composition of the substances and/or systems with acid neutralizing capacity that prevailed. Thus, the Haplustolls were the less affected soils by acidification due to their high amount of free limeand soil organic matter (SOM) as well as the smectitic mineralogy of their fine mineral fractions, clay and silt. The Argiudolls were the soils with stronger neutralizing mechanisms given by both their high SOM and fine mineral fractions contents, though illitic. Therefore, the Hapludolls were the most susceptible soils to being acidified if N-fertilization continues, according to the low quantity of SOM and fine mineral fractions of illitic mineralogy. From these results, the development and validation of mathematical models were assessed in order to predict the soil buffer capacity and the future pH of the soils. The soil buffer capacity was explained 78% by both the cation exchange and dissolution reactions of minerals accumulated in clays and silts, while pH values were explained 75% by the cation exchange capacity as well as by the SOM, free-lime and clay and silt contents. The pH that the soils would have in the future was predicted with an accuracy of 75% by the outcomes of the simulations, and in a 57% by the pH values of no-tilled and urea fertilized soils. EEA Anguil Fil: Iturri, Laura Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Buschiazzo, Daniel Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina |
description |
Agricultural loess soils of the central region of Argentina show acidification evidences linked to both climatic conditions and N-fertilization. Because of that, simulations to estimate the future acidification trends under continuing N-fertilization, considering the different neutralization capacities of the soils in this region, were performed. An equivalent number of protons to that produced by a constant application of 180 kg urea ha−1 year−1 (84 kg N ha−1 year−1) during 1, 10, 30 and 50 years of fertilization, was added to unfertilized topsoil samples of agricultural Haplustolls, Hapludolls and Argiudolls. Mostly proton additions did not modify neither CEC nor the contents of both amorphous and crystalline Al, Mn and Fe oxides. However, the Hapludolls, located in the transition zone of the climosequence, showed decreases in their phyllosilicates crystallinity with the most acidifying treatments equivalent to 30 and 50 years of N-fertilization. This effect was less pronounced in those soils placed in both the driest (Haplustolls) and the moist (Argiudolls) environments, due to the amount and composition of the substances and/or systems with acid neutralizing capacity that prevailed. Thus, the Haplustolls were the less affected soils by acidification due to their high amount of free limeand soil organic matter (SOM) as well as the smectitic mineralogy of their fine mineral fractions, clay and silt. The Argiudolls were the soils with stronger neutralizing mechanisms given by both their high SOM and fine mineral fractions contents, though illitic. Therefore, the Hapludolls were the most susceptible soils to being acidified if N-fertilization continues, according to the low quantity of SOM and fine mineral fractions of illitic mineralogy. From these results, the development and validation of mathematical models were assessed in order to predict the soil buffer capacity and the future pH of the soils. The soil buffer capacity was explained 78% by both the cation exchange and dissolution reactions of minerals accumulated in clays and silts, while pH values were explained 75% by the cation exchange capacity as well as by the SOM, free-lime and clay and silt contents. The pH that the soils would have in the future was predicted with an accuracy of 75% by the outcomes of the simulations, and in a 57% by the pH values of no-tilled and urea fertilized soils. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2019-02-08T15:41:48Z 2019-02-08T15:41:48Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/4415 https://www.sciencedirect.com/science/article/pii/S0341816218303266?via%3Dihub 0341-8162 https://doi.org/10.1016/j.catena.2018.08.002 |
url |
http://hdl.handle.net/20.500.12123/4415 https://www.sciencedirect.com/science/article/pii/S0341816218303266?via%3Dihub https://doi.org/10.1016/j.catena.2018.08.002 |
identifier_str_mv |
0341-8162 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
CATENA 171 : 565-579. (December 2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619130589675520 |
score |
12.559606 |