Production of a bacterial secretome highly efficient for the deconstruction of xylans

Autores
Topalian, Juliana; Navas, Laura Emilce; Ontañon, Ornella Mailen; Valacco, Maria Pia; Noseda, Diego Gabriel; Blasco, Martín; Peña, María Jesús; Urbanowicz, Breeanna Rae; Campos, Eleonora
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Instituto de Biotecnología
Fil: Topalian, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Topalian, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Topalian, Juliana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Navas, Laura Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Navas, Laura Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ontañon, Ornella. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Ontañon, Ornella. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valacco, Maria Pia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Centro de Estudios Químicos y Biológicos por Espectrometría de Masa; Argentina
Fil: Valacco, Maria Pia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Noseda, Diego Gabriel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Blasco, Martín. Instituto Nacional de Tecnología Industrial (INTI). Departamento de Bioprocesos; Argentina
Fil: Blasco, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Peña, María Jesús. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados Unidos
Fil: Urbanowicz, Breeanna Rae. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados Unidos
Fil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fuente
World Journal of Microbiology and Biotechnology 40 (9) : 266 (Septiembre 2024)
Materia
Paenibacillus
Polysaccharides
Bioreactors
Xylans
Lignocellulose
Biomass
Polisacáridos
Biorreactores
Xilanos
Lignocelulosa
Biomasa
Bacterial Secretome
Secretoma Bacteriano
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/19107

id INTADig_eee47961cee103a0e77c637876102796
oai_identifier_str oai:localhost:20.500.12123/19107
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Production of a bacterial secretome highly efficient for the deconstruction of xylansTopalian, JulianaNavas, Laura EmilceOntañon, Ornella MailenValacco, Maria PiaNoseda, Diego GabrielBlasco, MartínPeña, María JesúsUrbanowicz, Breeanna RaeCampos, EleonoraPaenibacillusPolysaccharidesBioreactorsXylansLignocelluloseBiomassPolisacáridosBiorreactoresXilanosLignocelulosaBiomasaBacterial SecretomeSecretoma BacterianoBacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.Instituto de BiotecnologíaFil: Topalian, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Topalian, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Topalian, Juliana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Navas, Laura Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Navas, Laura Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ontañon, Ornella. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Ontañon, Ornella. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valacco, Maria Pia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Centro de Estudios Químicos y Biológicos por Espectrometría de Masa; ArgentinaFil: Valacco, Maria Pia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Noseda, Diego Gabriel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Blasco, Martín. Instituto Nacional de Tecnología Industrial (INTI). Departamento de Bioprocesos; ArgentinaFil: Blasco, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Peña, María Jesús. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados UnidosFil: Urbanowicz, Breeanna Rae. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados UnidosFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringerinfo:eu-repo/date/embargoEnd/2025-08-262024-08-26T11:58:25Z2024-08-26T11:58:25Z2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/19107https://link.springer.com/article/10.1007/s11274-024-04075-y1573-0972https://doi.org/10.1007/s11274-024-04075-yWorld Journal of Microbiology and Biotechnology 40 (9) : 266 (Septiembre 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PE-E7-I149-001, Bioenergía generada en origen como aporte al desarrollo territorialinfo:eu-repograntAgreement/INTA/2019-PD-E7-I152-001, Alimentos nutracéuticos, funcionales o para regímenes especialesinfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:46Zoai:localhost:20.500.12123/19107instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:47.309INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Production of a bacterial secretome highly efficient for the deconstruction of xylans
title Production of a bacterial secretome highly efficient for the deconstruction of xylans
spellingShingle Production of a bacterial secretome highly efficient for the deconstruction of xylans
Topalian, Juliana
Paenibacillus
Polysaccharides
Bioreactors
Xylans
Lignocellulose
Biomass
Polisacáridos
Biorreactores
Xilanos
Lignocelulosa
Biomasa
Bacterial Secretome
Secretoma Bacteriano
title_short Production of a bacterial secretome highly efficient for the deconstruction of xylans
title_full Production of a bacterial secretome highly efficient for the deconstruction of xylans
title_fullStr Production of a bacterial secretome highly efficient for the deconstruction of xylans
title_full_unstemmed Production of a bacterial secretome highly efficient for the deconstruction of xylans
title_sort Production of a bacterial secretome highly efficient for the deconstruction of xylans
dc.creator.none.fl_str_mv Topalian, Juliana
Navas, Laura Emilce
Ontañon, Ornella Mailen
Valacco, Maria Pia
Noseda, Diego Gabriel
Blasco, Martín
Peña, María Jesús
Urbanowicz, Breeanna Rae
Campos, Eleonora
author Topalian, Juliana
author_facet Topalian, Juliana
Navas, Laura Emilce
Ontañon, Ornella Mailen
Valacco, Maria Pia
Noseda, Diego Gabriel
Blasco, Martín
Peña, María Jesús
Urbanowicz, Breeanna Rae
Campos, Eleonora
author_role author
author2 Navas, Laura Emilce
Ontañon, Ornella Mailen
Valacco, Maria Pia
Noseda, Diego Gabriel
Blasco, Martín
Peña, María Jesús
Urbanowicz, Breeanna Rae
Campos, Eleonora
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Paenibacillus
Polysaccharides
Bioreactors
Xylans
Lignocellulose
Biomass
Polisacáridos
Biorreactores
Xilanos
Lignocelulosa
Biomasa
Bacterial Secretome
Secretoma Bacteriano
topic Paenibacillus
Polysaccharides
Bioreactors
Xylans
Lignocellulose
Biomass
Polisacáridos
Biorreactores
Xilanos
Lignocelulosa
Biomasa
Bacterial Secretome
Secretoma Bacteriano
dc.description.none.fl_txt_mv Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Instituto de Biotecnología
Fil: Topalian, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Topalian, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Topalian, Juliana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Navas, Laura Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Navas, Laura Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ontañon, Ornella. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Ontañon, Ornella. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valacco, Maria Pia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Centro de Estudios Químicos y Biológicos por Espectrometría de Masa; Argentina
Fil: Valacco, Maria Pia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Noseda, Diego Gabriel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Blasco, Martín. Instituto Nacional de Tecnología Industrial (INTI). Departamento de Bioprocesos; Argentina
Fil: Blasco, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Peña, María Jesús. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados Unidos
Fil: Urbanowicz, Breeanna Rae. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados Unidos
Fil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-26T11:58:25Z
2024-08-26T11:58:25Z
2024-09
info:eu-repo/date/embargoEnd/2025-08-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/19107
https://link.springer.com/article/10.1007/s11274-024-04075-y
1573-0972
https://doi.org/10.1007/s11274-024-04075-y
url http://hdl.handle.net/20.500.12123/19107
https://link.springer.com/article/10.1007/s11274-024-04075-y
https://doi.org/10.1007/s11274-024-04075-y
identifier_str_mv 1573-0972
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/2019-PE-E7-I149-001, Bioenergía generada en origen como aporte al desarrollo territorial
info:eu-repograntAgreement/INTA/2019-PD-E7-I152-001, Alimentos nutracéuticos, funcionales o para regímenes especiales
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv World Journal of Microbiology and Biotechnology 40 (9) : 266 (Septiembre 2024)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619192711512064
score 12.559606