Production of a bacterial secretome highly efficient for the deconstruction of xylans
- Autores
- Topalian, Juliana; Navas, Laura Emilce; Ontañon, Ornella Mailen; Valacco, Maria Pia; Noseda, Diego Gabriel; Blasco, Martín; Peña, María Jesús; Urbanowicz, Breeanna Rae; Campos, Eleonora
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Instituto de Biotecnología
Fil: Topalian, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Topalian, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Topalian, Juliana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Navas, Laura Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Navas, Laura Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ontañon, Ornella. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Ontañon, Ornella. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valacco, Maria Pia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Centro de Estudios Químicos y Biológicos por Espectrometría de Masa; Argentina
Fil: Valacco, Maria Pia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Noseda, Diego Gabriel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Blasco, Martín. Instituto Nacional de Tecnología Industrial (INTI). Departamento de Bioprocesos; Argentina
Fil: Blasco, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Peña, María Jesús. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados Unidos
Fil: Urbanowicz, Breeanna Rae. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados Unidos
Fil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- World Journal of Microbiology and Biotechnology 40 (9) : 266 (Septiembre 2024)
- Materia
-
Paenibacillus
Polysaccharides
Bioreactors
Xylans
Lignocellulose
Biomass
Polisacáridos
Biorreactores
Xilanos
Lignocelulosa
Biomasa
Bacterial Secretome
Secretoma Bacteriano - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/19107
Ver los metadatos del registro completo
id |
INTADig_eee47961cee103a0e77c637876102796 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/19107 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Production of a bacterial secretome highly efficient for the deconstruction of xylansTopalian, JulianaNavas, Laura EmilceOntañon, Ornella MailenValacco, Maria PiaNoseda, Diego GabrielBlasco, MartínPeña, María JesúsUrbanowicz, Breeanna RaeCampos, EleonoraPaenibacillusPolysaccharidesBioreactorsXylansLignocelluloseBiomassPolisacáridosBiorreactoresXilanosLignocelulosaBiomasaBacterial SecretomeSecretoma BacterianoBacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.Instituto de BiotecnologíaFil: Topalian, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Topalian, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Topalian, Juliana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Navas, Laura Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Navas, Laura Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ontañon, Ornella. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Ontañon, Ornella. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valacco, Maria Pia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Centro de Estudios Químicos y Biológicos por Espectrometría de Masa; ArgentinaFil: Valacco, Maria Pia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Noseda, Diego Gabriel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Blasco, Martín. Instituto Nacional de Tecnología Industrial (INTI). Departamento de Bioprocesos; ArgentinaFil: Blasco, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Peña, María Jesús. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados UnidosFil: Urbanowicz, Breeanna Rae. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados UnidosFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringerinfo:eu-repo/date/embargoEnd/2025-08-262024-08-26T11:58:25Z2024-08-26T11:58:25Z2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/19107https://link.springer.com/article/10.1007/s11274-024-04075-y1573-0972https://doi.org/10.1007/s11274-024-04075-yWorld Journal of Microbiology and Biotechnology 40 (9) : 266 (Septiembre 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PE-E7-I149-001, Bioenergía generada en origen como aporte al desarrollo territorialinfo:eu-repograntAgreement/INTA/2019-PD-E7-I152-001, Alimentos nutracéuticos, funcionales o para regímenes especialesinfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:46Zoai:localhost:20.500.12123/19107instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:47.309INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Production of a bacterial secretome highly efficient for the deconstruction of xylans |
title |
Production of a bacterial secretome highly efficient for the deconstruction of xylans |
spellingShingle |
Production of a bacterial secretome highly efficient for the deconstruction of xylans Topalian, Juliana Paenibacillus Polysaccharides Bioreactors Xylans Lignocellulose Biomass Polisacáridos Biorreactores Xilanos Lignocelulosa Biomasa Bacterial Secretome Secretoma Bacteriano |
title_short |
Production of a bacterial secretome highly efficient for the deconstruction of xylans |
title_full |
Production of a bacterial secretome highly efficient for the deconstruction of xylans |
title_fullStr |
Production of a bacterial secretome highly efficient for the deconstruction of xylans |
title_full_unstemmed |
Production of a bacterial secretome highly efficient for the deconstruction of xylans |
title_sort |
Production of a bacterial secretome highly efficient for the deconstruction of xylans |
dc.creator.none.fl_str_mv |
Topalian, Juliana Navas, Laura Emilce Ontañon, Ornella Mailen Valacco, Maria Pia Noseda, Diego Gabriel Blasco, Martín Peña, María Jesús Urbanowicz, Breeanna Rae Campos, Eleonora |
author |
Topalian, Juliana |
author_facet |
Topalian, Juliana Navas, Laura Emilce Ontañon, Ornella Mailen Valacco, Maria Pia Noseda, Diego Gabriel Blasco, Martín Peña, María Jesús Urbanowicz, Breeanna Rae Campos, Eleonora |
author_role |
author |
author2 |
Navas, Laura Emilce Ontañon, Ornella Mailen Valacco, Maria Pia Noseda, Diego Gabriel Blasco, Martín Peña, María Jesús Urbanowicz, Breeanna Rae Campos, Eleonora |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Paenibacillus Polysaccharides Bioreactors Xylans Lignocellulose Biomass Polisacáridos Biorreactores Xilanos Lignocelulosa Biomasa Bacterial Secretome Secretoma Bacteriano |
topic |
Paenibacillus Polysaccharides Bioreactors Xylans Lignocellulose Biomass Polisacáridos Biorreactores Xilanos Lignocelulosa Biomasa Bacterial Secretome Secretoma Bacteriano |
dc.description.none.fl_txt_mv |
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass. Instituto de Biotecnología Fil: Topalian, Juliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Topalian, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Topalian, Juliana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina Fil: Navas, Laura Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Navas, Laura Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ontañon, Ornella. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Ontañon, Ornella. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Valacco, Maria Pia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Centro de Estudios Químicos y Biológicos por Espectrometría de Masa; Argentina Fil: Valacco, Maria Pia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Noseda, Diego Gabriel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Blasco, Martín. Instituto Nacional de Tecnología Industrial (INTI). Departamento de Bioprocesos; Argentina Fil: Blasco, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Peña, María Jesús. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados Unidos Fil: Urbanowicz, Breeanna Rae. University of Georgia. Complex Carbohydrate Research Center. Department of Biochemistry and Molecular Biology; Estados Unidos Fil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08-26T11:58:25Z 2024-08-26T11:58:25Z 2024-09 info:eu-repo/date/embargoEnd/2025-08-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/19107 https://link.springer.com/article/10.1007/s11274-024-04075-y 1573-0972 https://doi.org/10.1007/s11274-024-04075-y |
url |
http://hdl.handle.net/20.500.12123/19107 https://link.springer.com/article/10.1007/s11274-024-04075-y https://doi.org/10.1007/s11274-024-04075-y |
identifier_str_mv |
1573-0972 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2019-PE-E7-I149-001, Bioenergía generada en origen como aporte al desarrollo territorial info:eu-repograntAgreement/INTA/2019-PD-E7-I152-001, Alimentos nutracéuticos, funcionales o para regímenes especiales |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
World Journal of Microbiology and Biotechnology 40 (9) : 266 (Septiembre 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619192711512064 |
score |
12.559606 |