Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes
- Autores
- Gaitan, Juan Jose; Bran, Donaldo Eduardo; Oliva, Gabriel Esteban; Ciari, Georgina; Nakamatsu, Viviana Beatriz; Salomone, Jorge Manuel; Ferrante, Daniela; Buono, Gustavo Gabriel; Massara Paletto, Virginia; Humano, Gervasio; Celdran, Diego Javier; Opazo, Walter Javier; Maestre, Fernando Tomás
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale.
Fil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina
Fil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina
Fil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina
Fil: Ciari, Georgina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina
Fil: Nakamatsu, Viviana Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina
Fil: Salomone, Jorge Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina
Fil: Ferrante, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina
Fil: Buono, Gustavo Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina
Fil: Massara Paletto, Virginia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina
Fil: Humano, Gervasio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina
Fil: Celdran, Diego Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina
Fil: Opazo, Walter Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina
Fil: Maestre, Fernando T. Universidad Rey Juan Carlos. Escuela Superior de Ciencias Experimentales y Tecnología. Departamento de Biología y Geología, Física y Química Inorgánica; España - Fuente
- Ecological indicators 34 : 181-191. (Nov. 2013)
- Materia
-
Desertificación
Desertification
Ecosystems
Vegetation
Remote Sensing
Spatial Distribution
Ecosistema
Vegetación
Teledetección
Distribución Espacial
Vegetation Indices
Landscape Function Analysis
Región Patagónica - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/1449
Ver los metadatos del registro completo
id |
INTADig_e700e249735caf63c2a77aed483b7184 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/1449 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppesGaitan, Juan JoseBran, Donaldo EduardoOliva, Gabriel EstebanCiari, GeorginaNakamatsu, Viviana BeatrizSalomone, Jorge ManuelFerrante, DanielaBuono, Gustavo GabrielMassara Paletto, VirginiaHumano, GervasioCeldran, Diego JavierOpazo, Walter JavierMaestre, Fernando TomásDesertificaciónDesertificationEcosystemsVegetationRemote SensingSpatial DistributionEcosistemaVegetaciónTeledetecciónDistribución EspacialVegetation IndicesLandscape Function AnalysisRegión PatagónicaAssessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale.Fil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Ciari, Georgina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: Nakamatsu, Viviana Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: Salomone, Jorge Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Ferrante, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Buono, Gustavo Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Massara Paletto, Virginia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Humano, Gervasio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Celdran, Diego Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Opazo, Walter Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: Maestre, Fernando T. Universidad Rey Juan Carlos. Escuela Superior de Ciencias Experimentales y Tecnología. Departamento de Biología y Geología, Física y Química Inorgánica; España2017-10-10T13:47:30Z2017-10-10T13:47:30Z2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/1449http://www.sciencedirect.com/science/article/pii/S1470160X130020331470-160Xhttps://doi.org/10.1016/j.ecolind.2013.05.007Ecological indicators 34 : 181-191. (Nov. 2013)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología AgropecuariaengPatagonia (general region)info:eu-repo/semantics/restrictedAccess2025-09-29T13:44:12Zoai:localhost:20.500.12123/1449instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:12.469INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
title |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
spellingShingle |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes Gaitan, Juan Jose Desertificación Desertification Ecosystems Vegetation Remote Sensing Spatial Distribution Ecosistema Vegetación Teledetección Distribución Espacial Vegetation Indices Landscape Function Analysis Región Patagónica |
title_short |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
title_full |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
title_fullStr |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
title_full_unstemmed |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
title_sort |
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
dc.creator.none.fl_str_mv |
Gaitan, Juan Jose Bran, Donaldo Eduardo Oliva, Gabriel Esteban Ciari, Georgina Nakamatsu, Viviana Beatriz Salomone, Jorge Manuel Ferrante, Daniela Buono, Gustavo Gabriel Massara Paletto, Virginia Humano, Gervasio Celdran, Diego Javier Opazo, Walter Javier Maestre, Fernando Tomás |
author |
Gaitan, Juan Jose |
author_facet |
Gaitan, Juan Jose Bran, Donaldo Eduardo Oliva, Gabriel Esteban Ciari, Georgina Nakamatsu, Viviana Beatriz Salomone, Jorge Manuel Ferrante, Daniela Buono, Gustavo Gabriel Massara Paletto, Virginia Humano, Gervasio Celdran, Diego Javier Opazo, Walter Javier Maestre, Fernando Tomás |
author_role |
author |
author2 |
Bran, Donaldo Eduardo Oliva, Gabriel Esteban Ciari, Georgina Nakamatsu, Viviana Beatriz Salomone, Jorge Manuel Ferrante, Daniela Buono, Gustavo Gabriel Massara Paletto, Virginia Humano, Gervasio Celdran, Diego Javier Opazo, Walter Javier Maestre, Fernando Tomás |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Desertificación Desertification Ecosystems Vegetation Remote Sensing Spatial Distribution Ecosistema Vegetación Teledetección Distribución Espacial Vegetation Indices Landscape Function Analysis Región Patagónica |
topic |
Desertificación Desertification Ecosystems Vegetation Remote Sensing Spatial Distribution Ecosistema Vegetación Teledetección Distribución Espacial Vegetation Indices Landscape Function Analysis Región Patagónica |
dc.description.none.fl_txt_mv |
Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale. Fil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Ciari, Georgina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Nakamatsu, Viviana Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Salomone, Jorge Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Ferrante, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Buono, Gustavo Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Massara Paletto, Virginia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Humano, Gervasio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Celdran, Diego Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Opazo, Walter Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Maestre, Fernando T. Universidad Rey Juan Carlos. Escuela Superior de Ciencias Experimentales y Tecnología. Departamento de Biología y Geología, Física y Química Inorgánica; España |
description |
Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 2017-10-10T13:47:30Z 2017-10-10T13:47:30Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/1449 http://www.sciencedirect.com/science/article/pii/S1470160X13002033 1470-160X https://doi.org/10.1016/j.ecolind.2013.05.007 |
url |
http://hdl.handle.net/20.500.12123/1449 http://www.sciencedirect.com/science/article/pii/S1470160X13002033 https://doi.org/10.1016/j.ecolind.2013.05.007 |
identifier_str_mv |
1470-160X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Patagonia (general region) |
dc.source.none.fl_str_mv |
Ecological indicators 34 : 181-191. (Nov. 2013) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619118197604352 |
score |
12.559606 |