Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
- Autores
- Caballero, Gabriel; Pezzola, Nestor Alejandro; Winschel, Cristina Ines; Casella, Alejandra An; Sanchez Angonova, Paolo Andres; Rivera Caicedo, Juan Pablo; Berger, Katja; Verrelst, Jochem; Delegido, Jesús
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.
Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Rivera Caicedo, Juan Pablo. CONACYT-UAN. Secretary of Research and Graduate Studies; México
Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España. Mantle Labs GmbH; Austria
Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España - Fuente
- Remote Sensing 14 (18) : 4531. (September 2022)
- Materia
-
Leaf Area Index
Kriging
Imagery
Índice de Superficie Foliar
Krigeage
Imágenes
Vegetation Water and Chlorophyll Content
Hybrid Retrieval Workflow
Dimencionality Reduction
Active Learning
Contenido de Agua y Clorofila de la Vegetación
Flujo de Trabajo de Recuperación Híbrido
Reducción de Dimensionalidad
Aprendizaje Activo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/13248
Ver los metadatos del registro completo
id |
INTADig_89a52a302655bd31d76627fee7ebf08f |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/13248 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imageryCaballero, GabrielPezzola, Nestor AlejandroWinschel, Cristina InesCasella, Alejandra AnSanchez Angonova, Paolo AndresRivera Caicedo, Juan PabloBerger, KatjaVerrelst, JochemDelegido, JesúsLeaf Area IndexKrigingImageryÍndice de Superficie FoliarKrigeageImágenesVegetation Water and Chlorophyll ContentHybrid Retrieval WorkflowDimencionality ReductionActive LearningContenido de Agua y Clorofila de la VegetaciónFlujo de Trabajo de Recuperación HíbridoReducción de DimensionalidadAprendizaje ActivoEarth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Rivera Caicedo, Juan Pablo. CONACYT-UAN. Secretary of Research and Graduate Studies; MéxicoFil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España. Mantle Labs GmbH; AustriaFil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaMDPI2022-10-28T12:24:07Z2022-10-28T12:24:07Z2022-09-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13248https://www.mdpi.com/2072-4292/14/18/45312072-4292https://doi.org/10.3390/rs14184531Remote Sensing 14 (18) : 4531. (September 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:46Zoai:localhost:20.500.12123/13248instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:46.752INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery |
title |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery |
spellingShingle |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery Caballero, Gabriel Leaf Area Index Kriging Imagery Índice de Superficie Foliar Krigeage Imágenes Vegetation Water and Chlorophyll Content Hybrid Retrieval Workflow Dimencionality Reduction Active Learning Contenido de Agua y Clorofila de la Vegetación Flujo de Trabajo de Recuperación Híbrido Reducción de Dimensionalidad Aprendizaje Activo |
title_short |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery |
title_full |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery |
title_fullStr |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery |
title_full_unstemmed |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery |
title_sort |
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery |
dc.creator.none.fl_str_mv |
Caballero, Gabriel Pezzola, Nestor Alejandro Winschel, Cristina Ines Casella, Alejandra An Sanchez Angonova, Paolo Andres Rivera Caicedo, Juan Pablo Berger, Katja Verrelst, Jochem Delegido, Jesús |
author |
Caballero, Gabriel |
author_facet |
Caballero, Gabriel Pezzola, Nestor Alejandro Winschel, Cristina Ines Casella, Alejandra An Sanchez Angonova, Paolo Andres Rivera Caicedo, Juan Pablo Berger, Katja Verrelst, Jochem Delegido, Jesús |
author_role |
author |
author2 |
Pezzola, Nestor Alejandro Winschel, Cristina Ines Casella, Alejandra An Sanchez Angonova, Paolo Andres Rivera Caicedo, Juan Pablo Berger, Katja Verrelst, Jochem Delegido, Jesús |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Leaf Area Index Kriging Imagery Índice de Superficie Foliar Krigeage Imágenes Vegetation Water and Chlorophyll Content Hybrid Retrieval Workflow Dimencionality Reduction Active Learning Contenido de Agua y Clorofila de la Vegetación Flujo de Trabajo de Recuperación Híbrido Reducción de Dimensionalidad Aprendizaje Activo |
topic |
Leaf Area Index Kriging Imagery Índice de Superficie Foliar Krigeage Imágenes Vegetation Water and Chlorophyll Content Hybrid Retrieval Workflow Dimencionality Reduction Active Learning Contenido de Agua y Clorofila de la Vegetación Flujo de Trabajo de Recuperación Híbrido Reducción de Dimensionalidad Aprendizaje Activo |
dc.description.none.fl_txt_mv |
Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions. Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay. University of Valencia. Image Processing Laboratory (IPL); España Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Rivera Caicedo, Juan Pablo. CONACYT-UAN. Secretary of Research and Graduate Studies; México Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España. Mantle Labs GmbH; Austria Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España |
description |
Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-28T12:24:07Z 2022-10-28T12:24:07Z 2022-09-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/13248 https://www.mdpi.com/2072-4292/14/18/4531 2072-4292 https://doi.org/10.3390/rs14184531 |
url |
http://hdl.handle.net/20.500.12123/13248 https://www.mdpi.com/2072-4292/14/18/4531 https://doi.org/10.3390/rs14184531 |
identifier_str_mv |
2072-4292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Remote Sensing 14 (18) : 4531. (September 2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619170948317184 |
score |
12.559606 |