Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery

Autores
Caballero, Gabriel; Pezzola, Nestor Alejandro; Winschel, Cristina Ines; Casella, Alejandra An; Sanchez Angonova, Paolo Andres; Rivera Caicedo, Juan Pablo; Berger, Katja; Verrelst, Jochem; Delegido, Jesús
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.
Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Rivera Caicedo, Juan Pablo. CONACYT-UAN. Secretary of Research and Graduate Studies; México
Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España. Mantle Labs GmbH; Austria
Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España
Fuente
Remote Sensing 14 (18) : 4531. (September 2022)
Materia
Leaf Area Index
Kriging
Imagery
Índice de Superficie Foliar
Krigeage
Imágenes
Vegetation Water and Chlorophyll Content
Hybrid Retrieval Workflow
Dimencionality Reduction
Active Learning
Contenido de Agua y Clorofila de la Vegetación
Flujo de Trabajo de Recuperación Híbrido
Reducción de Dimensionalidad
Aprendizaje Activo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/13248

id INTADig_89a52a302655bd31d76627fee7ebf08f
oai_identifier_str oai:localhost:20.500.12123/13248
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imageryCaballero, GabrielPezzola, Nestor AlejandroWinschel, Cristina InesCasella, Alejandra AnSanchez Angonova, Paolo AndresRivera Caicedo, Juan PabloBerger, KatjaVerrelst, JochemDelegido, JesúsLeaf Area IndexKrigingImageryÍndice de Superficie FoliarKrigeageImágenesVegetation Water and Chlorophyll ContentHybrid Retrieval WorkflowDimencionality ReductionActive LearningContenido de Agua y Clorofila de la VegetaciónFlujo de Trabajo de Recuperación HíbridoReducción de DimensionalidadAprendizaje ActivoEarth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Rivera Caicedo, Juan Pablo. CONACYT-UAN. Secretary of Research and Graduate Studies; MéxicoFil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España. Mantle Labs GmbH; AustriaFil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); EspañaMDPI2022-10-28T12:24:07Z2022-10-28T12:24:07Z2022-09-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13248https://www.mdpi.com/2072-4292/14/18/45312072-4292https://doi.org/10.3390/rs14184531Remote Sensing 14 (18) : 4531. (September 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:46Zoai:localhost:20.500.12123/13248instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:46.752INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
spellingShingle Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
Caballero, Gabriel
Leaf Area Index
Kriging
Imagery
Índice de Superficie Foliar
Krigeage
Imágenes
Vegetation Water and Chlorophyll Content
Hybrid Retrieval Workflow
Dimencionality Reduction
Active Learning
Contenido de Agua y Clorofila de la Vegetación
Flujo de Trabajo de Recuperación Híbrido
Reducción de Dimensionalidad
Aprendizaje Activo
title_short Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_full Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_fullStr Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_full_unstemmed Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_sort Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
dc.creator.none.fl_str_mv Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Rivera Caicedo, Juan Pablo
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author Caballero, Gabriel
author_facet Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Rivera Caicedo, Juan Pablo
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author_role author
author2 Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Rivera Caicedo, Juan Pablo
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Leaf Area Index
Kriging
Imagery
Índice de Superficie Foliar
Krigeage
Imágenes
Vegetation Water and Chlorophyll Content
Hybrid Retrieval Workflow
Dimencionality Reduction
Active Learning
Contenido de Agua y Clorofila de la Vegetación
Flujo de Trabajo de Recuperación Híbrido
Reducción de Dimensionalidad
Aprendizaje Activo
topic Leaf Area Index
Kriging
Imagery
Índice de Superficie Foliar
Krigeage
Imágenes
Vegetation Water and Chlorophyll Content
Hybrid Retrieval Workflow
Dimencionality Reduction
Active Learning
Contenido de Agua y Clorofila de la Vegetación
Flujo de Trabajo de Recuperación Híbrido
Reducción de Dimensionalidad
Aprendizaje Activo
dc.description.none.fl_txt_mv Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.
Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Rivera Caicedo, Juan Pablo. CONACYT-UAN. Secretary of Research and Graduate Studies; México
Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España. Mantle Labs GmbH; Austria
Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España
Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España
description Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-28T12:24:07Z
2022-10-28T12:24:07Z
2022-09-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/13248
https://www.mdpi.com/2072-4292/14/18/4531
2072-4292
https://doi.org/10.3390/rs14184531
url http://hdl.handle.net/20.500.12123/13248
https://www.mdpi.com/2072-4292/14/18/4531
https://doi.org/10.3390/rs14184531
identifier_str_mv 2072-4292
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Remote Sensing 14 (18) : 4531. (September 2022)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619170948317184
score 12.559606