A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize
- Autores
- Lacasa, Josefina; Hefley, Trevor J.; Otegui, María Elena; Ciampitti, Ignacio A.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The fraction of intercepted photosynthetically active radiation (fPARi) is typically described with a non-linear function of leaf area index (LAI) and k, the light extinction coefficient. The parameter k is used to make statistical inference, as an input into crop models, and for phenotyping. It may be estimated using a variety of statistical techniques that differ in assumptions, which ultimately influences the numerical value k and associated uncertainty estimates. A systematic search of peer-reviewed publications for maize (Zea Mays L.) revealed: (i) incompleteness in reported estimation techniques; and (ii) that most studies relied on dated techniques with unrealistic assumptions, such as log-transformed linear models (LogTLM) or normally distributed data. These findings suggest that knowledge of the variety and trade-offs among statistical estimation techniques is lacking, which hinders the use of modern approaches such as Bayesian estimation (BE) and techniques with appropriate assumptions, e.g. assuming beta-distributed data.
Estación Experimental Agropecuaria Pergamino
Fil: Lacasa, Josefina. Kansas State University. Department of Agronomy; Estados Unidos
Fil: Lacasa, Josefina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
Fil: Hefley, Trevor J. Kansas State University. Department of Statistics; Estados Unidos
Fil: Otegui, María E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; Argentina
Fil: Otegui, María E. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
Fil: Otegui, María E. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ciampitti , Ignacio A. Kansas State University. Department of Agronomy; Estados Unidos - Fuente
- Plant Methods 17 : 60 (2021)
- Materia
-
Radiation
Maize
Statistical Sampling
Radiación
Maíz
Zea mays
Muestreo Estadístico
Nonlinear Models
Modelos No Lineales - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/9723
Ver los metadatos del registro completo
id |
INTADig_cf1a7991ef7f72de0d74835d88090e18 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/9723 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maizeLacasa, JosefinaHefley, Trevor J.Otegui, María ElenaCiampitti, Ignacio A.RadiationMaizeStatistical SamplingRadiaciónMaízZea maysMuestreo EstadísticoNonlinear ModelsModelos No LinealesThe fraction of intercepted photosynthetically active radiation (fPARi) is typically described with a non-linear function of leaf area index (LAI) and k, the light extinction coefficient. The parameter k is used to make statistical inference, as an input into crop models, and for phenotyping. It may be estimated using a variety of statistical techniques that differ in assumptions, which ultimately influences the numerical value k and associated uncertainty estimates. A systematic search of peer-reviewed publications for maize (Zea Mays L.) revealed: (i) incompleteness in reported estimation techniques; and (ii) that most studies relied on dated techniques with unrealistic assumptions, such as log-transformed linear models (LogTLM) or normally distributed data. These findings suggest that knowledge of the variety and trade-offs among statistical estimation techniques is lacking, which hinders the use of modern approaches such as Bayesian estimation (BE) and techniques with appropriate assumptions, e.g. assuming beta-distributed data.Estación Experimental Agropecuaria PergaminoFil: Lacasa, Josefina. Kansas State University. Department of Agronomy; Estados UnidosFil: Lacasa, Josefina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Hefley, Trevor J. Kansas State University. Department of Statistics; Estados UnidosFil: Otegui, María E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Otegui, María E. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Otegui, María E. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ciampitti , Ignacio A. Kansas State University. Department of Agronomy; Estados UnidosSpringer Nature2021-07-02T16:04:56Z2021-07-02T16:04:56Z2021-06-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/9723https://plantmethods.biomedcentral.com/articles/10.1186/s13007-021-00753-21746-4811https://doi.org/10.1186/s13007-021-00753-2Plant Methods 17 : 60 (2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/PNCYO-1127042/AR./Bases ecofisiológicas para el mejoramiento genético y la calidad diferenciada de cereales y oleaginosas.info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:16Zoai:localhost:20.500.12123/9723instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:16.725INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize |
title |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize |
spellingShingle |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize Lacasa, Josefina Radiation Maize Statistical Sampling Radiación Maíz Zea mays Muestreo Estadístico Nonlinear Models Modelos No Lineales |
title_short |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize |
title_full |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize |
title_fullStr |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize |
title_full_unstemmed |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize |
title_sort |
A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize |
dc.creator.none.fl_str_mv |
Lacasa, Josefina Hefley, Trevor J. Otegui, María Elena Ciampitti, Ignacio A. |
author |
Lacasa, Josefina |
author_facet |
Lacasa, Josefina Hefley, Trevor J. Otegui, María Elena Ciampitti, Ignacio A. |
author_role |
author |
author2 |
Hefley, Trevor J. Otegui, María Elena Ciampitti, Ignacio A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Radiation Maize Statistical Sampling Radiación Maíz Zea mays Muestreo Estadístico Nonlinear Models Modelos No Lineales |
topic |
Radiation Maize Statistical Sampling Radiación Maíz Zea mays Muestreo Estadístico Nonlinear Models Modelos No Lineales |
dc.description.none.fl_txt_mv |
The fraction of intercepted photosynthetically active radiation (fPARi) is typically described with a non-linear function of leaf area index (LAI) and k, the light extinction coefficient. The parameter k is used to make statistical inference, as an input into crop models, and for phenotyping. It may be estimated using a variety of statistical techniques that differ in assumptions, which ultimately influences the numerical value k and associated uncertainty estimates. A systematic search of peer-reviewed publications for maize (Zea Mays L.) revealed: (i) incompleteness in reported estimation techniques; and (ii) that most studies relied on dated techniques with unrealistic assumptions, such as log-transformed linear models (LogTLM) or normally distributed data. These findings suggest that knowledge of the variety and trade-offs among statistical estimation techniques is lacking, which hinders the use of modern approaches such as Bayesian estimation (BE) and techniques with appropriate assumptions, e.g. assuming beta-distributed data. Estación Experimental Agropecuaria Pergamino Fil: Lacasa, Josefina. Kansas State University. Department of Agronomy; Estados Unidos Fil: Lacasa, Josefina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Hefley, Trevor J. Kansas State University. Department of Statistics; Estados Unidos Fil: Otegui, María E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; Argentina Fil: Otegui, María E. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Otegui, María E. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ciampitti , Ignacio A. Kansas State University. Department of Agronomy; Estados Unidos |
description |
The fraction of intercepted photosynthetically active radiation (fPARi) is typically described with a non-linear function of leaf area index (LAI) and k, the light extinction coefficient. The parameter k is used to make statistical inference, as an input into crop models, and for phenotyping. It may be estimated using a variety of statistical techniques that differ in assumptions, which ultimately influences the numerical value k and associated uncertainty estimates. A systematic search of peer-reviewed publications for maize (Zea Mays L.) revealed: (i) incompleteness in reported estimation techniques; and (ii) that most studies relied on dated techniques with unrealistic assumptions, such as log-transformed linear models (LogTLM) or normally distributed data. These findings suggest that knowledge of the variety and trade-offs among statistical estimation techniques is lacking, which hinders the use of modern approaches such as Bayesian estimation (BE) and techniques with appropriate assumptions, e.g. assuming beta-distributed data. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-02T16:04:56Z 2021-07-02T16:04:56Z 2021-06-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/9723 https://plantmethods.biomedcentral.com/articles/10.1186/s13007-021-00753-2 1746-4811 https://doi.org/10.1186/s13007-021-00753-2 |
url |
http://hdl.handle.net/20.500.12123/9723 https://plantmethods.biomedcentral.com/articles/10.1186/s13007-021-00753-2 https://doi.org/10.1186/s13007-021-00753-2 |
identifier_str_mv |
1746-4811 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/PNCYO-1127042/AR./Bases ecofisiológicas para el mejoramiento genético y la calidad diferenciada de cereales y oleaginosas. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
Plant Methods 17 : 60 (2021) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619155300417536 |
score |
12.559606 |