Sunpheno : a deep neural network for phenological classification of sunflower images
- Autores
- Bengoa Luoni, Sofía Ailin; Ricci, Riccardo; Corzo, Melanie Anahi; Hoxha, Genc; Melgani, Farid; Fernandez, Paula Del Carmen
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase.
Instituto de Biotecnología
Fil: Bengoa Luoni, Sofia Ailin. Wageningen University & Research. Laboratory of Genetics; Países Bajos
Fil: Ricci, Riccardo. University of Trento. Department of Information Engineering and Computer Science; Italia
Fil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Corzo, Melanie Anahi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hoxha, Genc. Technische Universität Berlin. Faculty of Electrical Engineering and Computer Science; Alemania
Fil: Melgani, Farid. University of Trento. Department of Information Engineering and Computer Science; Italia
Fil: Fernandez, Paula Del Carmen. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina
Fil: Fernandez, Paula Del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- Plants 13 (14) : 1998 (July 2024)
- Materia
-
Phenology
Senescence
Sunflowers
Machine Learning
Fenología
Avejentamiento
Girasol
Aprendizaje Automático - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/18739
Ver los metadatos del registro completo
id |
INTADig_cd5f9b331ba9c227a3ce8a344cc67cc0 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/18739 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Sunpheno : a deep neural network for phenological classification of sunflower imagesBengoa Luoni, Sofía AilinRicci, RiccardoCorzo, Melanie AnahiHoxha, GencMelgani, FaridFernandez, Paula Del CarmenPhenologySenescenceSunflowersMachine LearningFenologíaAvejentamientoGirasolAprendizaje AutomáticoLeaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase.Instituto de BiotecnologíaFil: Bengoa Luoni, Sofia Ailin. Wageningen University & Research. Laboratory of Genetics; Países BajosFil: Ricci, Riccardo. University of Trento. Department of Information Engineering and Computer Science; ItaliaFil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Corzo, Melanie Anahi. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hoxha, Genc. Technische Universität Berlin. Faculty of Electrical Engineering and Computer Science; AlemaniaFil: Melgani, Farid. University of Trento. Department of Information Engineering and Computer Science; ItaliaFil: Fernandez, Paula Del Carmen. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Fernandez, Paula Del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMDPI2024-08-01T10:18:50Z2024-08-01T10:18:50Z2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/18739https://www.mdpi.com/2223-7747/13/14/19982223-7747https://doi.org/10.3390/plants13141998Plants 13 (14) : 1998 (July 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/PNBIO/1131022/AR./Genómica funcional y biología de sistemas.info:eu-repograntAgreement/INTA/PNBIO/1131043/AR./Bioinformática y Estadística Genómica.info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:46Zoai:localhost:20.500.12123/18739instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:47.132INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Sunpheno : a deep neural network for phenological classification of sunflower images |
title |
Sunpheno : a deep neural network for phenological classification of sunflower images |
spellingShingle |
Sunpheno : a deep neural network for phenological classification of sunflower images Bengoa Luoni, Sofía Ailin Phenology Senescence Sunflowers Machine Learning Fenología Avejentamiento Girasol Aprendizaje Automático |
title_short |
Sunpheno : a deep neural network for phenological classification of sunflower images |
title_full |
Sunpheno : a deep neural network for phenological classification of sunflower images |
title_fullStr |
Sunpheno : a deep neural network for phenological classification of sunflower images |
title_full_unstemmed |
Sunpheno : a deep neural network for phenological classification of sunflower images |
title_sort |
Sunpheno : a deep neural network for phenological classification of sunflower images |
dc.creator.none.fl_str_mv |
Bengoa Luoni, Sofía Ailin Ricci, Riccardo Corzo, Melanie Anahi Hoxha, Genc Melgani, Farid Fernandez, Paula Del Carmen |
author |
Bengoa Luoni, Sofía Ailin |
author_facet |
Bengoa Luoni, Sofía Ailin Ricci, Riccardo Corzo, Melanie Anahi Hoxha, Genc Melgani, Farid Fernandez, Paula Del Carmen |
author_role |
author |
author2 |
Ricci, Riccardo Corzo, Melanie Anahi Hoxha, Genc Melgani, Farid Fernandez, Paula Del Carmen |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Phenology Senescence Sunflowers Machine Learning Fenología Avejentamiento Girasol Aprendizaje Automático |
topic |
Phenology Senescence Sunflowers Machine Learning Fenología Avejentamiento Girasol Aprendizaje Automático |
dc.description.none.fl_txt_mv |
Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase. Instituto de Biotecnología Fil: Bengoa Luoni, Sofia Ailin. Wageningen University & Research. Laboratory of Genetics; Países Bajos Fil: Ricci, Riccardo. University of Trento. Department of Information Engineering and Computer Science; Italia Fil: Corzo, Melanie Anahi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Corzo, Melanie Anahi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hoxha, Genc. Technische Universität Berlin. Faculty of Electrical Engineering and Computer Science; Alemania Fil: Melgani, Farid. University of Trento. Department of Information Engineering and Computer Science; Italia Fil: Fernandez, Paula Del Carmen. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Fernandez, Paula Del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08-01T10:18:50Z 2024-08-01T10:18:50Z 2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/18739 https://www.mdpi.com/2223-7747/13/14/1998 2223-7747 https://doi.org/10.3390/plants13141998 |
url |
http://hdl.handle.net/20.500.12123/18739 https://www.mdpi.com/2223-7747/13/14/1998 https://doi.org/10.3390/plants13141998 |
identifier_str_mv |
2223-7747 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/PNBIO/1131022/AR./Genómica funcional y biología de sistemas. info:eu-repograntAgreement/INTA/PNBIO/1131043/AR./Bioinformática y Estadística Genómica. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Plants 13 (14) : 1998 (July 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143576277254144 |
score |
12.712165 |