Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city

Autores
Robbiati, Federico Omar; Cáceres, Natalia; Barea Paci, Gustavo Javier; Ovando, Gustavo; Jim, C.Y.; Suárez, Mario Adolfo; Hick, Emmanuel Christian Bernard; Rubio, Esteban Julian; Galetto, Leonardo; Imhot, Lelia
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
cumulating greenhouse gasses. Global warming has been related to increased carbon dioxide (CO2) emissions [1,2]. Urban areas emit a significant amount of greenhouse gasses, including 78% of total CO2 emissions [3]. Transport, the cooling and heating of buildings, industrial activities and the construction sector are the principal sources of CO2 and other emissions in urban ecosystems [4], with a significant temperature increase since the end of the last century [5]. Moreover, urbanization can remove large tracts of vegetation cover, degrade soil properties, reduce their ability to sequester and store carbon [6] and perturb biogeochemical and ecological processes [7,8]. Such changes have made the urban environment more vulnerable to climate change.Serious environmental, social and economic problems could be generated due to urban ecosystem degradation [9]. Consequently, it is urgent to develop and implement strategies to reduce atmospheric CO2 emissions in the urban context [3,10], given that urbanization has drastically intensified worldwide in recent years [6,11]. Energy production harms the environment and contributes to climate change [12,13]. Over 40% of the world’s energy is consumed in buildings [14], primarily for indoor cooling or heating [15]. The world needs to develop eco-friendly technologies to reduce building energy consumption [16]. Extensive vegetated roofs (EVRs) offer nature-based solutions that can reduce energy use, enhance energy efficiency, and inform energy-saving strategies [15,16,17]. The EVRs can contribute to this quest by reducing building energy use via multiple pathways, namely shading, insulation, increasing albedo, evapotranspiration [18–23], and suppressing the urban heat island effect [24–25]. There are several green options for carbon sequestration in urban ecosystems, including urban forests [26], turfgrass [27] and vegetated roofs [1,3]. The EVR is an innovative low-impact development practice [28] that provides notable ecosystem functions where carbon sequestration plays an important role in mitigating climate change [29]. EVRs can realize a modern biophilic technology on a building rooftop, consisting of vegetation growing on a constituted substrate [30–32]. This nature-rich technology could ameliorate various urbanization problems such as the urban heat island effect, stormwater runoff, heat stress, noise and air pollution [32–35]. EVRs are widely employed in bioclimatic architecture to complement traditional materials on flat roofs [1, 36–39]. This green technology could contribute to atmospheric carbon reduction in cities in two ways [1]. First, it directly lowers CO2 in the air by increasing carbon sequestration through photosynthesis [40–42]. Second, it indirectly depresses the building’s cooling and heating energy consumption. This passive thermal regulation is attributed to reduced ingress of solar heat in summer and reduced egress of indoor heat in winter [28,32,43,44]. Plants play an important role in atmospheric CO2 sequestration by fixing carbon into long-lived C pools via photosynthesis [45–48]. Carbon sequestration in EVRs is associated with plants, substrate, green roof structure, and management [47,29,18], especially the substrate’s organic carbon content [49]. The plant biomass in an EVR plays a crucial role in passive temperature regulation [50], mainly due to latent energy absorption during transpiration [51]. Additionally, plants can provide cooling by shading and reflecting solar and terrestrial radiant energy, reducing the mean radiant temperature, and improving ambient microclimatic conditions [52]. Based on these findings, we hypothesized that EVRs are efficient in storing CO2 and reducing emissions due to lower energy consumption. Therefore, our research objective was to assess EVR performance in the semiarid region of central Argentina by: i) quantifying the carbon sequestration capacity of EVRs and ii) estimating EVR potential to reduce CO2 emission. To quantify their carbon sequestration capacity, we calculated the total carbon storage and total carbon sequestration in three EVRs located in contrasting urban environments. To estimate the EVR potential to reduce CO2 emission, we simulated the reduction of energy consumption by the EVRs using the EnergyPlus simulation software. We adjusted the actual data of physical parameters obtained in our trials to calculate the reduction in CO2 emission. These results are essential to understanding EVR contribution to reducing CO2 emission in a semiarid region of central Argentina.
Fil: Robbiati, Federico Omar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecología; Argentina
Fil: Cáceres, Natalia. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Argentina
Fil: Barea Paci, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ambiente, Hábitat y Energía; Argentina
Fil: Ovando, Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Jim, C.Y. University of Hong Kong, Department of Social Sciences; China
Fil: Suárez, Mario Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Argentina
Fil: Hick, Emmanuel Christian Bernard. Universidad Católica de Córdoba, Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Argentina
Fil: Rubio, Esteban Julian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Floricultura; Argentina
Fil: Galetto, Leonardo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Imhof, Lelia. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba, Argentina
Fuente
Nature-based solutions 3 : 100069 (December 2023)
Materia
Secuestro de Carbono
Cambio Climático
Carbon Sequestration
Climate Change
Techos Verdes
Green Roofs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/15329

id INTADig_ccbb1f85141e7e4a1735b587f66747e4
oai_identifier_str oai:localhost:20.500.12123/15329
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid cityRobbiati, Federico OmarCáceres, NataliaBarea Paci, Gustavo JavierOvando, GustavoJim, C.Y.Suárez, Mario AdolfoHick, Emmanuel Christian BernardRubio, Esteban JulianGaletto, LeonardoImhot, LeliaSecuestro de CarbonoCambio ClimáticoCarbon SequestrationClimate ChangeTechos VerdesGreen Roofscumulating greenhouse gasses. Global warming has been related to increased carbon dioxide (CO2) emissions [1,2]. Urban areas emit a significant amount of greenhouse gasses, including 78% of total CO2 emissions [3]. Transport, the cooling and heating of buildings, industrial activities and the construction sector are the principal sources of CO2 and other emissions in urban ecosystems [4], with a significant temperature increase since the end of the last century [5]. Moreover, urbanization can remove large tracts of vegetation cover, degrade soil properties, reduce their ability to sequester and store carbon [6] and perturb biogeochemical and ecological processes [7,8]. Such changes have made the urban environment more vulnerable to climate change.Serious environmental, social and economic problems could be generated due to urban ecosystem degradation [9]. Consequently, it is urgent to develop and implement strategies to reduce atmospheric CO2 emissions in the urban context [3,10], given that urbanization has drastically intensified worldwide in recent years [6,11]. Energy production harms the environment and contributes to climate change [12,13]. Over 40% of the world’s energy is consumed in buildings [14], primarily for indoor cooling or heating [15]. The world needs to develop eco-friendly technologies to reduce building energy consumption [16]. Extensive vegetated roofs (EVRs) offer nature-based solutions that can reduce energy use, enhance energy efficiency, and inform energy-saving strategies [15,16,17]. The EVRs can contribute to this quest by reducing building energy use via multiple pathways, namely shading, insulation, increasing albedo, evapotranspiration [18–23], and suppressing the urban heat island effect [24–25]. There are several green options for carbon sequestration in urban ecosystems, including urban forests [26], turfgrass [27] and vegetated roofs [1,3]. The EVR is an innovative low-impact development practice [28] that provides notable ecosystem functions where carbon sequestration plays an important role in mitigating climate change [29]. EVRs can realize a modern biophilic technology on a building rooftop, consisting of vegetation growing on a constituted substrate [30–32]. This nature-rich technology could ameliorate various urbanization problems such as the urban heat island effect, stormwater runoff, heat stress, noise and air pollution [32–35]. EVRs are widely employed in bioclimatic architecture to complement traditional materials on flat roofs [1, 36–39]. This green technology could contribute to atmospheric carbon reduction in cities in two ways [1]. First, it directly lowers CO2 in the air by increasing carbon sequestration through photosynthesis [40–42]. Second, it indirectly depresses the building’s cooling and heating energy consumption. This passive thermal regulation is attributed to reduced ingress of solar heat in summer and reduced egress of indoor heat in winter [28,32,43,44]. Plants play an important role in atmospheric CO2 sequestration by fixing carbon into long-lived C pools via photosynthesis [45–48]. Carbon sequestration in EVRs is associated with plants, substrate, green roof structure, and management [47,29,18], especially the substrate’s organic carbon content [49]. The plant biomass in an EVR plays a crucial role in passive temperature regulation [50], mainly due to latent energy absorption during transpiration [51]. Additionally, plants can provide cooling by shading and reflecting solar and terrestrial radiant energy, reducing the mean radiant temperature, and improving ambient microclimatic conditions [52]. Based on these findings, we hypothesized that EVRs are efficient in storing CO2 and reducing emissions due to lower energy consumption. Therefore, our research objective was to assess EVR performance in the semiarid region of central Argentina by: i) quantifying the carbon sequestration capacity of EVRs and ii) estimating EVR potential to reduce CO2 emission. To quantify their carbon sequestration capacity, we calculated the total carbon storage and total carbon sequestration in three EVRs located in contrasting urban environments. To estimate the EVR potential to reduce CO2 emission, we simulated the reduction of energy consumption by the EVRs using the EnergyPlus simulation software. We adjusted the actual data of physical parameters obtained in our trials to calculate the reduction in CO2 emission. These results are essential to understanding EVR contribution to reducing CO2 emission in a semiarid region of central Argentina.Fil: Robbiati, Federico Omar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecología; ArgentinaFil: Cáceres, Natalia. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; ArgentinaFil: Barea Paci, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ambiente, Hábitat y Energía; ArgentinaFil: Ovando, Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Jim, C.Y. University of Hong Kong, Department of Social Sciences; ChinaFil: Suárez, Mario Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; ArgentinaFil: Hick, Emmanuel Christian Bernard. Universidad Católica de Córdoba, Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. ArgentinaFil: Rubio, Esteban Julian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Floricultura; ArgentinaFil: Galetto, Leonardo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Imhof, Lelia. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba, ArgentinaElsevier2023-09-27T11:42:26Z2023-09-27T11:42:26Z2023-05-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/15329https://www.sciencedirect.com/science/article/pii/S27724115230002162772-4115https://doi.org/10.1016/j.nbsj.2023.100069Nature-based solutions 3 : 100069 (December 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:49:58Zoai:localhost:20.500.12123/15329instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:49:58.552INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city
title Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city
spellingShingle Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city
Robbiati, Federico Omar
Secuestro de Carbono
Cambio Climático
Carbon Sequestration
Climate Change
Techos Verdes
Green Roofs
title_short Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city
title_full Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city
title_fullStr Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city
title_full_unstemmed Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city
title_sort Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city
dc.creator.none.fl_str_mv Robbiati, Federico Omar
Cáceres, Natalia
Barea Paci, Gustavo Javier
Ovando, Gustavo
Jim, C.Y.
Suárez, Mario Adolfo
Hick, Emmanuel Christian Bernard
Rubio, Esteban Julian
Galetto, Leonardo
Imhot, Lelia
author Robbiati, Federico Omar
author_facet Robbiati, Federico Omar
Cáceres, Natalia
Barea Paci, Gustavo Javier
Ovando, Gustavo
Jim, C.Y.
Suárez, Mario Adolfo
Hick, Emmanuel Christian Bernard
Rubio, Esteban Julian
Galetto, Leonardo
Imhot, Lelia
author_role author
author2 Cáceres, Natalia
Barea Paci, Gustavo Javier
Ovando, Gustavo
Jim, C.Y.
Suárez, Mario Adolfo
Hick, Emmanuel Christian Bernard
Rubio, Esteban Julian
Galetto, Leonardo
Imhot, Lelia
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Secuestro de Carbono
Cambio Climático
Carbon Sequestration
Climate Change
Techos Verdes
Green Roofs
topic Secuestro de Carbono
Cambio Climático
Carbon Sequestration
Climate Change
Techos Verdes
Green Roofs
dc.description.none.fl_txt_mv cumulating greenhouse gasses. Global warming has been related to increased carbon dioxide (CO2) emissions [1,2]. Urban areas emit a significant amount of greenhouse gasses, including 78% of total CO2 emissions [3]. Transport, the cooling and heating of buildings, industrial activities and the construction sector are the principal sources of CO2 and other emissions in urban ecosystems [4], with a significant temperature increase since the end of the last century [5]. Moreover, urbanization can remove large tracts of vegetation cover, degrade soil properties, reduce their ability to sequester and store carbon [6] and perturb biogeochemical and ecological processes [7,8]. Such changes have made the urban environment more vulnerable to climate change.Serious environmental, social and economic problems could be generated due to urban ecosystem degradation [9]. Consequently, it is urgent to develop and implement strategies to reduce atmospheric CO2 emissions in the urban context [3,10], given that urbanization has drastically intensified worldwide in recent years [6,11]. Energy production harms the environment and contributes to climate change [12,13]. Over 40% of the world’s energy is consumed in buildings [14], primarily for indoor cooling or heating [15]. The world needs to develop eco-friendly technologies to reduce building energy consumption [16]. Extensive vegetated roofs (EVRs) offer nature-based solutions that can reduce energy use, enhance energy efficiency, and inform energy-saving strategies [15,16,17]. The EVRs can contribute to this quest by reducing building energy use via multiple pathways, namely shading, insulation, increasing albedo, evapotranspiration [18–23], and suppressing the urban heat island effect [24–25]. There are several green options for carbon sequestration in urban ecosystems, including urban forests [26], turfgrass [27] and vegetated roofs [1,3]. The EVR is an innovative low-impact development practice [28] that provides notable ecosystem functions where carbon sequestration plays an important role in mitigating climate change [29]. EVRs can realize a modern biophilic technology on a building rooftop, consisting of vegetation growing on a constituted substrate [30–32]. This nature-rich technology could ameliorate various urbanization problems such as the urban heat island effect, stormwater runoff, heat stress, noise and air pollution [32–35]. EVRs are widely employed in bioclimatic architecture to complement traditional materials on flat roofs [1, 36–39]. This green technology could contribute to atmospheric carbon reduction in cities in two ways [1]. First, it directly lowers CO2 in the air by increasing carbon sequestration through photosynthesis [40–42]. Second, it indirectly depresses the building’s cooling and heating energy consumption. This passive thermal regulation is attributed to reduced ingress of solar heat in summer and reduced egress of indoor heat in winter [28,32,43,44]. Plants play an important role in atmospheric CO2 sequestration by fixing carbon into long-lived C pools via photosynthesis [45–48]. Carbon sequestration in EVRs is associated with plants, substrate, green roof structure, and management [47,29,18], especially the substrate’s organic carbon content [49]. The plant biomass in an EVR plays a crucial role in passive temperature regulation [50], mainly due to latent energy absorption during transpiration [51]. Additionally, plants can provide cooling by shading and reflecting solar and terrestrial radiant energy, reducing the mean radiant temperature, and improving ambient microclimatic conditions [52]. Based on these findings, we hypothesized that EVRs are efficient in storing CO2 and reducing emissions due to lower energy consumption. Therefore, our research objective was to assess EVR performance in the semiarid region of central Argentina by: i) quantifying the carbon sequestration capacity of EVRs and ii) estimating EVR potential to reduce CO2 emission. To quantify their carbon sequestration capacity, we calculated the total carbon storage and total carbon sequestration in three EVRs located in contrasting urban environments. To estimate the EVR potential to reduce CO2 emission, we simulated the reduction of energy consumption by the EVRs using the EnergyPlus simulation software. We adjusted the actual data of physical parameters obtained in our trials to calculate the reduction in CO2 emission. These results are essential to understanding EVR contribution to reducing CO2 emission in a semiarid region of central Argentina.
Fil: Robbiati, Federico Omar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecología; Argentina
Fil: Cáceres, Natalia. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Argentina
Fil: Barea Paci, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ambiente, Hábitat y Energía; Argentina
Fil: Ovando, Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Jim, C.Y. University of Hong Kong, Department of Social Sciences; China
Fil: Suárez, Mario Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Argentina
Fil: Hick, Emmanuel Christian Bernard. Universidad Católica de Córdoba, Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Argentina
Fil: Rubio, Esteban Julian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Floricultura; Argentina
Fil: Galetto, Leonardo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Imhof, Lelia. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba, Argentina
description cumulating greenhouse gasses. Global warming has been related to increased carbon dioxide (CO2) emissions [1,2]. Urban areas emit a significant amount of greenhouse gasses, including 78% of total CO2 emissions [3]. Transport, the cooling and heating of buildings, industrial activities and the construction sector are the principal sources of CO2 and other emissions in urban ecosystems [4], with a significant temperature increase since the end of the last century [5]. Moreover, urbanization can remove large tracts of vegetation cover, degrade soil properties, reduce their ability to sequester and store carbon [6] and perturb biogeochemical and ecological processes [7,8]. Such changes have made the urban environment more vulnerable to climate change.Serious environmental, social and economic problems could be generated due to urban ecosystem degradation [9]. Consequently, it is urgent to develop and implement strategies to reduce atmospheric CO2 emissions in the urban context [3,10], given that urbanization has drastically intensified worldwide in recent years [6,11]. Energy production harms the environment and contributes to climate change [12,13]. Over 40% of the world’s energy is consumed in buildings [14], primarily for indoor cooling or heating [15]. The world needs to develop eco-friendly technologies to reduce building energy consumption [16]. Extensive vegetated roofs (EVRs) offer nature-based solutions that can reduce energy use, enhance energy efficiency, and inform energy-saving strategies [15,16,17]. The EVRs can contribute to this quest by reducing building energy use via multiple pathways, namely shading, insulation, increasing albedo, evapotranspiration [18–23], and suppressing the urban heat island effect [24–25]. There are several green options for carbon sequestration in urban ecosystems, including urban forests [26], turfgrass [27] and vegetated roofs [1,3]. The EVR is an innovative low-impact development practice [28] that provides notable ecosystem functions where carbon sequestration plays an important role in mitigating climate change [29]. EVRs can realize a modern biophilic technology on a building rooftop, consisting of vegetation growing on a constituted substrate [30–32]. This nature-rich technology could ameliorate various urbanization problems such as the urban heat island effect, stormwater runoff, heat stress, noise and air pollution [32–35]. EVRs are widely employed in bioclimatic architecture to complement traditional materials on flat roofs [1, 36–39]. This green technology could contribute to atmospheric carbon reduction in cities in two ways [1]. First, it directly lowers CO2 in the air by increasing carbon sequestration through photosynthesis [40–42]. Second, it indirectly depresses the building’s cooling and heating energy consumption. This passive thermal regulation is attributed to reduced ingress of solar heat in summer and reduced egress of indoor heat in winter [28,32,43,44]. Plants play an important role in atmospheric CO2 sequestration by fixing carbon into long-lived C pools via photosynthesis [45–48]. Carbon sequestration in EVRs is associated with plants, substrate, green roof structure, and management [47,29,18], especially the substrate’s organic carbon content [49]. The plant biomass in an EVR plays a crucial role in passive temperature regulation [50], mainly due to latent energy absorption during transpiration [51]. Additionally, plants can provide cooling by shading and reflecting solar and terrestrial radiant energy, reducing the mean radiant temperature, and improving ambient microclimatic conditions [52]. Based on these findings, we hypothesized that EVRs are efficient in storing CO2 and reducing emissions due to lower energy consumption. Therefore, our research objective was to assess EVR performance in the semiarid region of central Argentina by: i) quantifying the carbon sequestration capacity of EVRs and ii) estimating EVR potential to reduce CO2 emission. To quantify their carbon sequestration capacity, we calculated the total carbon storage and total carbon sequestration in three EVRs located in contrasting urban environments. To estimate the EVR potential to reduce CO2 emission, we simulated the reduction of energy consumption by the EVRs using the EnergyPlus simulation software. We adjusted the actual data of physical parameters obtained in our trials to calculate the reduction in CO2 emission. These results are essential to understanding EVR contribution to reducing CO2 emission in a semiarid region of central Argentina.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-27T11:42:26Z
2023-09-27T11:42:26Z
2023-05-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/15329
https://www.sciencedirect.com/science/article/pii/S2772411523000216
2772-4115
https://doi.org/10.1016/j.nbsj.2023.100069
url http://hdl.handle.net/20.500.12123/15329
https://www.sciencedirect.com/science/article/pii/S2772411523000216
https://doi.org/10.1016/j.nbsj.2023.100069
identifier_str_mv 2772-4115
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Nature-based solutions 3 : 100069 (December 2023)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341413948227584
score 12.623145