Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system

Autores
Peri, Pablo Luis
Año de publicación
2002
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Moot, Derrick J. (supervisor)
Descripción
Tesis para obtener el grado de Doctor of Philosophy (PhD) en Agricultural Sciences, de Lincoln University (New Zealand), en 2002
The aim of the research reported in this thesis was to construct leaf and canopy photosynthesis models for understorey cocksfoot pasture grown in a 10-11-year old Pinus radiata silvopastoral system. From these models, dry matter (DM) production was predicted based on a numerical description of the biological mechanisms involved in canopy photosynthesis. To do this, a wide range of environmental and management conditions were created through changes in light intensity and regime, temperature, soil moisture, nitrogen (N) and regrowth duration. A unique component of a silvopastoral system is the fluctuating light regime experienced by the understorey plants. The daily photosynthetic photon flux density (PPFD) integral was 55-62% of the open, with periods of full sunlight (1700-1900 µmol m⁻² s⁻¹ PPFD at midday) and severe shade (129-130 µmol m⁻² s⁻¹ PPFD) that changed within 45-120 minutes depending on the solar angle elevation. A similar pattern obtained from artificial slatted structures, also provided a bimodal light regime but with lower light intensity. The resulting DM growth rates ranged from 2 to 154 kg DM/ha/d. These differences were related to differences in canopy leaf area index (LAI) from 0.5 to 8.2 units caused by a reduced tiller population, canopy etiolation and canopy leaf angle. Net photosynthesis rate from seven light intensities (0, 100, 250, 500, 750, 1000 and 2000 µmol m⁻² s⁻¹ PPFD) were measured in the field using an open infrared gas analysis system. These were used to construct light curves for the youngest fully expanded intact leaves. The prediction of DM production was based on an integrated leaf photosynthesis model that uses a non-rectangular hyperbola function to estimate the saturated leaf photosynthetic rate (Pmax), the photosynthetic efficiency (α) and the degree of curvature (θ) in the photosynthetic response of individual leaves. The highest Pmax was 27.4 µmol CO2 m⁻² s⁻¹ in non-limited conditions. This decreased to a minimum of -0.5 µmol CO₂m⁻² s⁻¹ under severe water stress (Ψlp= -16 bar). Values of α ranged from 0.036 µmol CO₂/µmol PPFD in non-limiting conditions to 0.020 µmol CO₂/µmol PPFD at 1.5% N. The degree of curvature of the leaf response curve θ was unaffected by the range of environmental factors and regrowth duration and had a mean value of 0.96 ±0.02. The response of these parameters to different temperature, N, moisture, regrowth and shade conditions were predicted using a multiplicative model for predicting Pmax, a 'law of the minimum factor' model for α and a constant for θ. These parameters were then incorporated into a canopy photosynthesis model with coefficients for respiration, partitioning and the main canopy characteristics that affect light interception (LAI and leaf angle). Based on this model, cocksfoot DM production was predicted for silvopastoral systems in non-limiting situations and where a single, two, three, four or all five factors were limiting for: air temperatures from 2 to 37 °C, water status from Ψlp -0.1 to -16.0 bar (corresponding to a soil volumetric water content to 500 mm depth of 8.5 to 34%), foliage N content from 1.5 to 5.9%, regrowth duration from 20 to 60 days, and time course of shade (severe shade: 5% of open PPFD or moderate shade: 50% of open PPFD) from 1 to 180 minutes and the correspondent induction process (lag in the rise of photosynthesis rate to the maximum value) from 30, 60 and 180 minutes of severe shade. Using this model, it was shown that the continuous light regime of 50% transmissivity throughout a day had higher canopy photosynthesis than for the same intensity but a fluctuating light regime with periods of 90-120 minutes of full sunlight and severe shade (10.4 vs 8.4 g CO₂ m⁻² d⁻¹). This was due to (i) a faster decrease in Pmax and α for plants experiencing 5% of open PPFD compared with 50% of open PPFD; (ii) the lack of an induction process under continuous shade. These results indicate that artificial shade cloth gives a biased representation of the response of understorey pastures in silvopastoral systems. Validations from observed DM production data (from 9 to 134 kg DM/ha/d) were obtained from different environmental and management conditions and indicated that approximately 86% of the variation in cocksfoot growth rate was accounted for by using the model proposed. Therefore, the canopy photosynthesis model proposed in this study provides a powerful and useful tool for understanding and predicting DM production of cocksfoot understorey pastures in silvopastoral systems.
EEA Santa Cruz
Fil: Peri, Pablo Luis. INTA. Estación Experimental Agropecuaria Santa Cruz; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Dactylis glomerata
Sistemas Silvopascícolas
Agroforesteria
Luz
Clorofilas
Estrés de Sequia
Silvopastoral Systems
Agroforestry
Light
Chlorophylls
Drought Stress
Pasto ovillo
Estrés Hídrico
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/6205

id INTADig_c6cb4f7ecf834afff1d38679c15465cd
oai_identifier_str oai:localhost:20.500.12123/6205
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral systemPeri, Pablo LuisDactylis glomerataSistemas SilvopascícolasAgroforesteriaLuzClorofilasEstrés de SequiaSilvopastoral SystemsAgroforestryLightChlorophyllsDrought StressPasto ovilloEstrés HídricoTesis para obtener el grado de Doctor of Philosophy (PhD) en Agricultural Sciences, de Lincoln University (New Zealand), en 2002The aim of the research reported in this thesis was to construct leaf and canopy photosynthesis models for understorey cocksfoot pasture grown in a 10-11-year old Pinus radiata silvopastoral system. From these models, dry matter (DM) production was predicted based on a numerical description of the biological mechanisms involved in canopy photosynthesis. To do this, a wide range of environmental and management conditions were created through changes in light intensity and regime, temperature, soil moisture, nitrogen (N) and regrowth duration. A unique component of a silvopastoral system is the fluctuating light regime experienced by the understorey plants. The daily photosynthetic photon flux density (PPFD) integral was 55-62% of the open, with periods of full sunlight (1700-1900 µmol m⁻² s⁻¹ PPFD at midday) and severe shade (129-130 µmol m⁻² s⁻¹ PPFD) that changed within 45-120 minutes depending on the solar angle elevation. A similar pattern obtained from artificial slatted structures, also provided a bimodal light regime but with lower light intensity. The resulting DM growth rates ranged from 2 to 154 kg DM/ha/d. These differences were related to differences in canopy leaf area index (LAI) from 0.5 to 8.2 units caused by a reduced tiller population, canopy etiolation and canopy leaf angle. Net photosynthesis rate from seven light intensities (0, 100, 250, 500, 750, 1000 and 2000 µmol m⁻² s⁻¹ PPFD) were measured in the field using an open infrared gas analysis system. These were used to construct light curves for the youngest fully expanded intact leaves. The prediction of DM production was based on an integrated leaf photosynthesis model that uses a non-rectangular hyperbola function to estimate the saturated leaf photosynthetic rate (Pmax), the photosynthetic efficiency (α) and the degree of curvature (θ) in the photosynthetic response of individual leaves. The highest Pmax was 27.4 µmol CO2 m⁻² s⁻¹ in non-limited conditions. This decreased to a minimum of -0.5 µmol CO₂m⁻² s⁻¹ under severe water stress (Ψlp= -16 bar). Values of α ranged from 0.036 µmol CO₂/µmol PPFD in non-limiting conditions to 0.020 µmol CO₂/µmol PPFD at 1.5% N. The degree of curvature of the leaf response curve θ was unaffected by the range of environmental factors and regrowth duration and had a mean value of 0.96 ±0.02. The response of these parameters to different temperature, N, moisture, regrowth and shade conditions were predicted using a multiplicative model for predicting Pmax, a 'law of the minimum factor' model for α and a constant for θ. These parameters were then incorporated into a canopy photosynthesis model with coefficients for respiration, partitioning and the main canopy characteristics that affect light interception (LAI and leaf angle). Based on this model, cocksfoot DM production was predicted for silvopastoral systems in non-limiting situations and where a single, two, three, four or all five factors were limiting for: air temperatures from 2 to 37 °C, water status from Ψlp -0.1 to -16.0 bar (corresponding to a soil volumetric water content to 500 mm depth of 8.5 to 34%), foliage N content from 1.5 to 5.9%, regrowth duration from 20 to 60 days, and time course of shade (severe shade: 5% of open PPFD or moderate shade: 50% of open PPFD) from 1 to 180 minutes and the correspondent induction process (lag in the rise of photosynthesis rate to the maximum value) from 30, 60 and 180 minutes of severe shade. Using this model, it was shown that the continuous light regime of 50% transmissivity throughout a day had higher canopy photosynthesis than for the same intensity but a fluctuating light regime with periods of 90-120 minutes of full sunlight and severe shade (10.4 vs 8.4 g CO₂ m⁻² d⁻¹). This was due to (i) a faster decrease in Pmax and α for plants experiencing 5% of open PPFD compared with 50% of open PPFD; (ii) the lack of an induction process under continuous shade. These results indicate that artificial shade cloth gives a biased representation of the response of understorey pastures in silvopastoral systems. Validations from observed DM production data (from 9 to 134 kg DM/ha/d) were obtained from different environmental and management conditions and indicated that approximately 86% of the variation in cocksfoot growth rate was accounted for by using the model proposed. Therefore, the canopy photosynthesis model proposed in this study provides a powerful and useful tool for understanding and predicting DM production of cocksfoot understorey pastures in silvopastoral systems.EEA Santa CruzFil: Peri, Pablo Luis. INTA. Estación Experimental Agropecuaria Santa Cruz; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaLincoln University, Nueva ZelandaMoot, Derrick J. (supervisor)2019-10-25T12:17:25Z2019-10-25T12:17:25Z2002info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/20.500.12123/6205https://researcharchive.lincoln.ac.nz/handle/10182/3150enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuaria2025-09-11T10:23:13Zoai:localhost:20.500.12123/6205instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-11 10:23:13.939INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system
title Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system
spellingShingle Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system
Peri, Pablo Luis
Dactylis glomerata
Sistemas Silvopascícolas
Agroforesteria
Luz
Clorofilas
Estrés de Sequia
Silvopastoral Systems
Agroforestry
Light
Chlorophylls
Drought Stress
Pasto ovillo
Estrés Hídrico
title_short Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system
title_full Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system
title_fullStr Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system
title_full_unstemmed Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system
title_sort Leaf and canopy photosynthesis models for cocksfoot (Dactylis glomerata L.) grown in a silvopastoral system
dc.creator.none.fl_str_mv Peri, Pablo Luis
author Peri, Pablo Luis
author_facet Peri, Pablo Luis
author_role author
dc.contributor.none.fl_str_mv Moot, Derrick J. (supervisor)
dc.subject.none.fl_str_mv Dactylis glomerata
Sistemas Silvopascícolas
Agroforesteria
Luz
Clorofilas
Estrés de Sequia
Silvopastoral Systems
Agroforestry
Light
Chlorophylls
Drought Stress
Pasto ovillo
Estrés Hídrico
topic Dactylis glomerata
Sistemas Silvopascícolas
Agroforesteria
Luz
Clorofilas
Estrés de Sequia
Silvopastoral Systems
Agroforestry
Light
Chlorophylls
Drought Stress
Pasto ovillo
Estrés Hídrico
dc.description.none.fl_txt_mv Tesis para obtener el grado de Doctor of Philosophy (PhD) en Agricultural Sciences, de Lincoln University (New Zealand), en 2002
The aim of the research reported in this thesis was to construct leaf and canopy photosynthesis models for understorey cocksfoot pasture grown in a 10-11-year old Pinus radiata silvopastoral system. From these models, dry matter (DM) production was predicted based on a numerical description of the biological mechanisms involved in canopy photosynthesis. To do this, a wide range of environmental and management conditions were created through changes in light intensity and regime, temperature, soil moisture, nitrogen (N) and regrowth duration. A unique component of a silvopastoral system is the fluctuating light regime experienced by the understorey plants. The daily photosynthetic photon flux density (PPFD) integral was 55-62% of the open, with periods of full sunlight (1700-1900 µmol m⁻² s⁻¹ PPFD at midday) and severe shade (129-130 µmol m⁻² s⁻¹ PPFD) that changed within 45-120 minutes depending on the solar angle elevation. A similar pattern obtained from artificial slatted structures, also provided a bimodal light regime but with lower light intensity. The resulting DM growth rates ranged from 2 to 154 kg DM/ha/d. These differences were related to differences in canopy leaf area index (LAI) from 0.5 to 8.2 units caused by a reduced tiller population, canopy etiolation and canopy leaf angle. Net photosynthesis rate from seven light intensities (0, 100, 250, 500, 750, 1000 and 2000 µmol m⁻² s⁻¹ PPFD) were measured in the field using an open infrared gas analysis system. These were used to construct light curves for the youngest fully expanded intact leaves. The prediction of DM production was based on an integrated leaf photosynthesis model that uses a non-rectangular hyperbola function to estimate the saturated leaf photosynthetic rate (Pmax), the photosynthetic efficiency (α) and the degree of curvature (θ) in the photosynthetic response of individual leaves. The highest Pmax was 27.4 µmol CO2 m⁻² s⁻¹ in non-limited conditions. This decreased to a minimum of -0.5 µmol CO₂m⁻² s⁻¹ under severe water stress (Ψlp= -16 bar). Values of α ranged from 0.036 µmol CO₂/µmol PPFD in non-limiting conditions to 0.020 µmol CO₂/µmol PPFD at 1.5% N. The degree of curvature of the leaf response curve θ was unaffected by the range of environmental factors and regrowth duration and had a mean value of 0.96 ±0.02. The response of these parameters to different temperature, N, moisture, regrowth and shade conditions were predicted using a multiplicative model for predicting Pmax, a 'law of the minimum factor' model for α and a constant for θ. These parameters were then incorporated into a canopy photosynthesis model with coefficients for respiration, partitioning and the main canopy characteristics that affect light interception (LAI and leaf angle). Based on this model, cocksfoot DM production was predicted for silvopastoral systems in non-limiting situations and where a single, two, three, four or all five factors were limiting for: air temperatures from 2 to 37 °C, water status from Ψlp -0.1 to -16.0 bar (corresponding to a soil volumetric water content to 500 mm depth of 8.5 to 34%), foliage N content from 1.5 to 5.9%, regrowth duration from 20 to 60 days, and time course of shade (severe shade: 5% of open PPFD or moderate shade: 50% of open PPFD) from 1 to 180 minutes and the correspondent induction process (lag in the rise of photosynthesis rate to the maximum value) from 30, 60 and 180 minutes of severe shade. Using this model, it was shown that the continuous light regime of 50% transmissivity throughout a day had higher canopy photosynthesis than for the same intensity but a fluctuating light regime with periods of 90-120 minutes of full sunlight and severe shade (10.4 vs 8.4 g CO₂ m⁻² d⁻¹). This was due to (i) a faster decrease in Pmax and α for plants experiencing 5% of open PPFD compared with 50% of open PPFD; (ii) the lack of an induction process under continuous shade. These results indicate that artificial shade cloth gives a biased representation of the response of understorey pastures in silvopastoral systems. Validations from observed DM production data (from 9 to 134 kg DM/ha/d) were obtained from different environmental and management conditions and indicated that approximately 86% of the variation in cocksfoot growth rate was accounted for by using the model proposed. Therefore, the canopy photosynthesis model proposed in this study provides a powerful and useful tool for understanding and predicting DM production of cocksfoot understorey pastures in silvopastoral systems.
EEA Santa Cruz
Fil: Peri, Pablo Luis. INTA. Estación Experimental Agropecuaria Santa Cruz; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Tesis para obtener el grado de Doctor of Philosophy (PhD) en Agricultural Sciences, de Lincoln University (New Zealand), en 2002
publishDate 2002
dc.date.none.fl_str_mv 2002
2019-10-25T12:17:25Z
2019-10-25T12:17:25Z
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/6205
https://researcharchive.lincoln.ac.nz/handle/10182/3150
url http://hdl.handle.net/20.500.12123/6205
https://researcharchive.lincoln.ac.nz/handle/10182/3150
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Lincoln University, Nueva Zelanda
publisher.none.fl_str_mv Lincoln University, Nueva Zelanda
dc.source.none.fl_str_mv reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842975484397223936
score 13.004268