New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis

Autores
Hojsgaard, Diego; Feingold, Sergio Enrique; Massa, Gabriela Alejandra; Bradshaw, John
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
EEA Balcarce
Fil: Hojsgaard, Diego. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania
Fil: Nagel, Manuela. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania
Fil: Feingold, Sergio Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: Massa, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: Massa, Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Bradshaw, John. James Hutton Institute; Reino Unido
Fuente
Biomolecules 14 (6) : 614 (May 2024)
Materia
Apomixis
Germplasm Banks
Gene Editing
Parthenogenesis
Gametogénesis
Banco de Germoplasma
Edición de Genes
Mitosis
Partenogénesis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/17977

id INTADig_bfb15eca5d18bab9e3616205be3e7898
oai_identifier_str oai:localhost:20.500.12123/17977
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and ApomixisHojsgaard, DiegoFeingold, Sergio EnriqueMassa, Gabriela AlejandraBradshaw, JohnApomixisGermplasm BanksGene EditingParthenogenesisGametogénesisBanco de GermoplasmaEdición de GenesMitosisPartenogénesisPotato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.EEA BalcarceFil: Hojsgaard, Diego. Leibniz Institute of Plant Genetics and Crop Plant Research; AlemaniaFil: Nagel, Manuela. Leibniz Institute of Plant Genetics and Crop Plant Research; AlemaniaFil: Feingold, Sergio Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; ArgentinaFil: Massa, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; ArgentinaFil: Massa, Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Bradshaw, John. James Hutton Institute; Reino UnidoMultidisciplinary Digital Publishing Institute, MDPI2024-05-31T10:30:01Z2024-05-31T10:30:01Z2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17977https://www.mdpi.com/2218-273X/14/6/6142218-273Xhttps://doi.org/10.3390/biom14060614Biomolecules 14 (6) : 614 (May 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:39Zoai:localhost:20.500.12123/17977instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:39.766INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
spellingShingle New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
Hojsgaard, Diego
Apomixis
Germplasm Banks
Gene Editing
Parthenogenesis
Gametogénesis
Banco de Germoplasma
Edición de Genes
Mitosis
Partenogénesis
title_short New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_full New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_fullStr New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_full_unstemmed New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_sort New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
dc.creator.none.fl_str_mv Hojsgaard, Diego
Feingold, Sergio Enrique
Massa, Gabriela Alejandra
Bradshaw, John
author Hojsgaard, Diego
author_facet Hojsgaard, Diego
Feingold, Sergio Enrique
Massa, Gabriela Alejandra
Bradshaw, John
author_role author
author2 Feingold, Sergio Enrique
Massa, Gabriela Alejandra
Bradshaw, John
author2_role author
author
author
dc.subject.none.fl_str_mv Apomixis
Germplasm Banks
Gene Editing
Parthenogenesis
Gametogénesis
Banco de Germoplasma
Edición de Genes
Mitosis
Partenogénesis
topic Apomixis
Germplasm Banks
Gene Editing
Parthenogenesis
Gametogénesis
Banco de Germoplasma
Edición de Genes
Mitosis
Partenogénesis
dc.description.none.fl_txt_mv Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
EEA Balcarce
Fil: Hojsgaard, Diego. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania
Fil: Nagel, Manuela. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania
Fil: Feingold, Sergio Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: Massa, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: Massa, Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Bradshaw, John. James Hutton Institute; Reino Unido
description Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-31T10:30:01Z
2024-05-31T10:30:01Z
2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/17977
https://www.mdpi.com/2218-273X/14/6/614
2218-273X
https://doi.org/10.3390/biom14060614
url http://hdl.handle.net/20.500.12123/17977
https://www.mdpi.com/2218-273X/14/6/614
https://doi.org/10.3390/biom14060614
identifier_str_mv 2218-273X
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute, MDPI
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute, MDPI
dc.source.none.fl_str_mv Biomolecules 14 (6) : 614 (May 2024)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143573358018560
score 12.712165