New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
- Autores
- Hojsgaard, Diego; Feingold, Sergio Enrique; Massa, Gabriela Alejandra; Bradshaw, John
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
EEA Balcarce
Fil: Hojsgaard, Diego. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania
Fil: Nagel, Manuela. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania
Fil: Feingold, Sergio Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: Massa, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: Massa, Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Bradshaw, John. James Hutton Institute; Reino Unido - Fuente
- Biomolecules 14 (6) : 614 (May 2024)
- Materia
-
Apomixis
Germplasm Banks
Gene Editing
Parthenogenesis
Gametogénesis
Banco de Germoplasma
Edición de Genes
Mitosis
Partenogénesis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/17977
Ver los metadatos del registro completo
id |
INTADig_bfb15eca5d18bab9e3616205be3e7898 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/17977 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and ApomixisHojsgaard, DiegoFeingold, Sergio EnriqueMassa, Gabriela AlejandraBradshaw, JohnApomixisGermplasm BanksGene EditingParthenogenesisGametogénesisBanco de GermoplasmaEdición de GenesMitosisPartenogénesisPotato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.EEA BalcarceFil: Hojsgaard, Diego. Leibniz Institute of Plant Genetics and Crop Plant Research; AlemaniaFil: Nagel, Manuela. Leibniz Institute of Plant Genetics and Crop Plant Research; AlemaniaFil: Feingold, Sergio Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; ArgentinaFil: Massa, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; ArgentinaFil: Massa, Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Bradshaw, John. James Hutton Institute; Reino UnidoMultidisciplinary Digital Publishing Institute, MDPI2024-05-31T10:30:01Z2024-05-31T10:30:01Z2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17977https://www.mdpi.com/2218-273X/14/6/6142218-273Xhttps://doi.org/10.3390/biom14060614Biomolecules 14 (6) : 614 (May 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:39Zoai:localhost:20.500.12123/17977instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:39.766INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis |
title |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis |
spellingShingle |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis Hojsgaard, Diego Apomixis Germplasm Banks Gene Editing Parthenogenesis Gametogénesis Banco de Germoplasma Edición de Genes Mitosis Partenogénesis |
title_short |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis |
title_full |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis |
title_fullStr |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis |
title_full_unstemmed |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis |
title_sort |
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis |
dc.creator.none.fl_str_mv |
Hojsgaard, Diego Feingold, Sergio Enrique Massa, Gabriela Alejandra Bradshaw, John |
author |
Hojsgaard, Diego |
author_facet |
Hojsgaard, Diego Feingold, Sergio Enrique Massa, Gabriela Alejandra Bradshaw, John |
author_role |
author |
author2 |
Feingold, Sergio Enrique Massa, Gabriela Alejandra Bradshaw, John |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Apomixis Germplasm Banks Gene Editing Parthenogenesis Gametogénesis Banco de Germoplasma Edición de Genes Mitosis Partenogénesis |
topic |
Apomixis Germplasm Banks Gene Editing Parthenogenesis Gametogénesis Banco de Germoplasma Edición de Genes Mitosis Partenogénesis |
dc.description.none.fl_txt_mv |
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities. EEA Balcarce Fil: Hojsgaard, Diego. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania Fil: Nagel, Manuela. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania Fil: Feingold, Sergio Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina Fil: Massa, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina Fil: Massa, Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Bradshaw, John. James Hutton Institute; Reino Unido |
description |
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-31T10:30:01Z 2024-05-31T10:30:01Z 2024-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/17977 https://www.mdpi.com/2218-273X/14/6/614 2218-273X https://doi.org/10.3390/biom14060614 |
url |
http://hdl.handle.net/20.500.12123/17977 https://www.mdpi.com/2218-273X/14/6/614 https://doi.org/10.3390/biom14060614 |
identifier_str_mv |
2218-273X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute, MDPI |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute, MDPI |
dc.source.none.fl_str_mv |
Biomolecules 14 (6) : 614 (May 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143573358018560 |
score |
12.712165 |