PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region

Autores
Scochera, Florencia; Zerbetto De Palma, Gerardo; Canessa Fortuna, Agustina; Chevriau, Jonathan; Toriano, Roxana; Soto, Gabriela Cynthia; Zeida, Ari; Alleva, Karina Edith
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Plant PIP aquaporins play a central role in controlling plant water status. The current structural model for PIP pH-gating states that the main pH sensor is located in loopD and that all the mobile cytosolic elements participate in a complex interaction network that ensures the closed structure. However, the precise participation of the last part of the C-terminal domain (CT) in PIP pH gating remains unknown. This last part has not been resolved in PIP crystal structures and is a key difference between PIP1 and PIP2 paralogues. Here, by a combined experimental and computational approach, we provide data about the role of CT in pH gating of Beta vulgaris PIP. We demonstrate that the length of CT and the positive charge located among its last residues modulate the pH at which the open/closed transition occurs. We also postulate a molecular-based mechanism for the differential pH sensing in PIP homo- or heterotetramers by performing atomistic molecular dynamics simulations (MDS) on complete models of PIP tetramers. Our findings show that the last part of CT can affect the environment of loopD pH sensors in the closed state. Results presented herein contribute to the understanding of how the characteristics of CT in PIP channels play a crucial role in determining the pH at which water transport through these channels is blocked, highlighting the relevance of the differentially conserved very last residues in PIP1 and PIP2 paralogues.
Instituto de Biotecnología
Fil: Scochera, Florencia. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
Fil: Zerbetto De Palma, Gerardo. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
Fil: Zerbetto De Palma, Gerardo. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; Argentina
Fil: Zerbetto De Palma, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; Argentina
Fil: Zerbetto De Palma, Gerardo. Universidad Nacional de Hurlingham. Instituto de Biotecnología; Argentina
Fil: Canessa Fortuna, Agustina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
Fil: Chevriau, Jonathan. Consejo Nacional de Investigaciones Científicas y Técnicas; Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; Argentina
Fil: Chevriau, Jonathan. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; Argentina.
Fil: Toriano, Roxana. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica “Bernardo Houssay"; Argentina
Fil: Toriano, Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Fisiología y Biofísica “Bernardo Houssay"; Argentina
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina
Fil: Soto, Gabriela Cinthia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Zeida, Ari. Universidad de la República. Facultad de Medicina. Departamento de Bioquímica and Centro de Investigaciones Biomédicas (Ceinbio); Uruguay
Fil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; Argentina
Fil: Alleva, Karina Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; Argentina.
Fil: Alleva, Karina Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
Fuente
FEBS Journal (First published: 22 July 2021)
Materia
Agua
Relaciones Planta Agua
Water
Plant Water Relations
pH
Cell Membranes
Membranas Celulares
Acuaporinas
Aquaporin
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/10918

id INTADig_2954dd9aa92bf86f2662eb7c0472b773
oai_identifier_str oai:localhost:20.500.12123/10918
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal regionScochera, FlorenciaZerbetto De Palma, GerardoCanessa Fortuna, AgustinaChevriau, JonathanToriano, RoxanaSoto, Gabriela CynthiaZeida, AriAlleva, Karina EdithAguaRelaciones Planta AguaWaterPlant Water RelationspHCell MembranesMembranas CelularesAcuaporinasAquaporinPlant PIP aquaporins play a central role in controlling plant water status. The current structural model for PIP pH-gating states that the main pH sensor is located in loopD and that all the mobile cytosolic elements participate in a complex interaction network that ensures the closed structure. However, the precise participation of the last part of the C-terminal domain (CT) in PIP pH gating remains unknown. This last part has not been resolved in PIP crystal structures and is a key difference between PIP1 and PIP2 paralogues. Here, by a combined experimental and computational approach, we provide data about the role of CT in pH gating of Beta vulgaris PIP. We demonstrate that the length of CT and the positive charge located among its last residues modulate the pH at which the open/closed transition occurs. We also postulate a molecular-based mechanism for the differential pH sensing in PIP homo- or heterotetramers by performing atomistic molecular dynamics simulations (MDS) on complete models of PIP tetramers. Our findings show that the last part of CT can affect the environment of loopD pH sensors in the closed state. Results presented herein contribute to the understanding of how the characteristics of CT in PIP channels play a crucial role in determining the pH at which water transport through these channels is blocked, highlighting the relevance of the differentially conserved very last residues in PIP1 and PIP2 paralogues.Instituto de BiotecnologíaFil: Scochera, Florencia. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; ArgentinaFil: Zerbetto De Palma, Gerardo. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; ArgentinaFil: Zerbetto De Palma, Gerardo. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; ArgentinaFil: Zerbetto De Palma, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; ArgentinaFil: Zerbetto De Palma, Gerardo. Universidad Nacional de Hurlingham. Instituto de Biotecnología; ArgentinaFil: Canessa Fortuna, Agustina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; ArgentinaFil: Chevriau, Jonathan. Consejo Nacional de Investigaciones Científicas y Técnicas; Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; ArgentinaFil: Chevriau, Jonathan. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; Argentina.Fil: Toriano, Roxana. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica “Bernardo Houssay"; ArgentinaFil: Toriano, Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Fisiología y Biofísica “Bernardo Houssay"; ArgentinaFil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Soto, Gabriela Cinthia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Zeida, Ari. Universidad de la República. Facultad de Medicina. Departamento de Bioquímica and Centro de Investigaciones Biomédicas (Ceinbio); UruguayFil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; ArgentinaFil: Alleva, Karina Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; Argentina.Fil: Alleva, Karina Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; ArgentinaWileyinfo:eu-repo/date/embargoEnd/2022-12-152021-12-15T17:35:27Z2021-12-15T17:35:27Z2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/10918https://febs.onlinelibrary.wiley.com/doi/10.1111/febs.161341742-464X1742-4658https://doi.org/10.1111/febs.16134FEBS Journal (First published: 22 July 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-04T09:49:12Zoai:localhost:20.500.12123/10918instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:49:12.993INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region
title PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region
spellingShingle PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region
Scochera, Florencia
Agua
Relaciones Planta Agua
Water
Plant Water Relations
pH
Cell Membranes
Membranas Celulares
Acuaporinas
Aquaporin
title_short PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region
title_full PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region
title_fullStr PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region
title_full_unstemmed PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region
title_sort PIP aquaporin pH sensing is regulated by the length and charge of the C-terminal region
dc.creator.none.fl_str_mv Scochera, Florencia
Zerbetto De Palma, Gerardo
Canessa Fortuna, Agustina
Chevriau, Jonathan
Toriano, Roxana
Soto, Gabriela Cynthia
Zeida, Ari
Alleva, Karina Edith
author Scochera, Florencia
author_facet Scochera, Florencia
Zerbetto De Palma, Gerardo
Canessa Fortuna, Agustina
Chevriau, Jonathan
Toriano, Roxana
Soto, Gabriela Cynthia
Zeida, Ari
Alleva, Karina Edith
author_role author
author2 Zerbetto De Palma, Gerardo
Canessa Fortuna, Agustina
Chevriau, Jonathan
Toriano, Roxana
Soto, Gabriela Cynthia
Zeida, Ari
Alleva, Karina Edith
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Agua
Relaciones Planta Agua
Water
Plant Water Relations
pH
Cell Membranes
Membranas Celulares
Acuaporinas
Aquaporin
topic Agua
Relaciones Planta Agua
Water
Plant Water Relations
pH
Cell Membranes
Membranas Celulares
Acuaporinas
Aquaporin
dc.description.none.fl_txt_mv Plant PIP aquaporins play a central role in controlling plant water status. The current structural model for PIP pH-gating states that the main pH sensor is located in loopD and that all the mobile cytosolic elements participate in a complex interaction network that ensures the closed structure. However, the precise participation of the last part of the C-terminal domain (CT) in PIP pH gating remains unknown. This last part has not been resolved in PIP crystal structures and is a key difference between PIP1 and PIP2 paralogues. Here, by a combined experimental and computational approach, we provide data about the role of CT in pH gating of Beta vulgaris PIP. We demonstrate that the length of CT and the positive charge located among its last residues modulate the pH at which the open/closed transition occurs. We also postulate a molecular-based mechanism for the differential pH sensing in PIP homo- or heterotetramers by performing atomistic molecular dynamics simulations (MDS) on complete models of PIP tetramers. Our findings show that the last part of CT can affect the environment of loopD pH sensors in the closed state. Results presented herein contribute to the understanding of how the characteristics of CT in PIP channels play a crucial role in determining the pH at which water transport through these channels is blocked, highlighting the relevance of the differentially conserved very last residues in PIP1 and PIP2 paralogues.
Instituto de Biotecnología
Fil: Scochera, Florencia. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
Fil: Zerbetto De Palma, Gerardo. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
Fil: Zerbetto De Palma, Gerardo. Universidad de Buenos Aires, Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; Argentina
Fil: Zerbetto De Palma, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; Argentina
Fil: Zerbetto De Palma, Gerardo. Universidad Nacional de Hurlingham. Instituto de Biotecnología; Argentina
Fil: Canessa Fortuna, Agustina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
Fil: Chevriau, Jonathan. Consejo Nacional de Investigaciones Científicas y Técnicas; Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; Argentina
Fil: Chevriau, Jonathan. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; Argentina.
Fil: Toriano, Roxana. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica “Bernardo Houssay"; Argentina
Fil: Toriano, Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Fisiología y Biofísica “Bernardo Houssay"; Argentina
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina
Fil: Soto, Gabriela Cinthia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Zeida, Ari. Universidad de la República. Facultad de Medicina. Departamento de Bioquímica and Centro de Investigaciones Biomédicas (Ceinbio); Uruguay
Fil: Alleva, Karina Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Ciudad Universitaria. Instituto de Química y Fisicoquímica Biológica; Argentina
Fil: Alleva, Karina Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Fisicoquímica Biológica; Argentina.
Fil: Alleva, Karina Edith. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Fisicomatemática; Argentina
description Plant PIP aquaporins play a central role in controlling plant water status. The current structural model for PIP pH-gating states that the main pH sensor is located in loopD and that all the mobile cytosolic elements participate in a complex interaction network that ensures the closed structure. However, the precise participation of the last part of the C-terminal domain (CT) in PIP pH gating remains unknown. This last part has not been resolved in PIP crystal structures and is a key difference between PIP1 and PIP2 paralogues. Here, by a combined experimental and computational approach, we provide data about the role of CT in pH gating of Beta vulgaris PIP. We demonstrate that the length of CT and the positive charge located among its last residues modulate the pH at which the open/closed transition occurs. We also postulate a molecular-based mechanism for the differential pH sensing in PIP homo- or heterotetramers by performing atomistic molecular dynamics simulations (MDS) on complete models of PIP tetramers. Our findings show that the last part of CT can affect the environment of loopD pH sensors in the closed state. Results presented herein contribute to the understanding of how the characteristics of CT in PIP channels play a crucial role in determining the pH at which water transport through these channels is blocked, highlighting the relevance of the differentially conserved very last residues in PIP1 and PIP2 paralogues.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-15T17:35:27Z
2021-12-15T17:35:27Z
2021-07
info:eu-repo/date/embargoEnd/2022-12-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/10918
https://febs.onlinelibrary.wiley.com/doi/10.1111/febs.16134
1742-464X
1742-4658
https://doi.org/10.1111/febs.16134
url http://hdl.handle.net/20.500.12123/10918
https://febs.onlinelibrary.wiley.com/doi/10.1111/febs.16134
https://doi.org/10.1111/febs.16134
identifier_str_mv 1742-464X
1742-4658
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv FEBS Journal (First published: 22 July 2021)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341392957833216
score 12.623145