Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions
- Autores
- Perri, Daiana Vanesa; Hurtado, Santiago Ignacio; Bruzzone, Octavio Augusto; Easdale, Marcos Horacio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The development of monitoring and early warning tools for environmental and agricultural applications is highly restricted in scarce climate data regions. In particular, precipitation data is a key input for several environmental monitoring tools on which decision-makers rely. However, precipitation records are collected by rain gauge stations, but these are frequently inhomogeneous and scarce in some regions of the world, especially in South America and Africa. In such cases, the use of alternative precipitation data sources is necessary to correctly assess its spatial and temporal variations. Therefore, we evaluate the possibility of using the ERA5 data with diferent automatic enhancement methods. Three adjustment approaches were evaluated in Northern Patagonia, which is an example of a scarce data area: (1) modifying the ERA5 daily data with three diferent regression models, one depending on lag and lead days, a distributed lag model, and a simple linear regression model, (2) detecting the lower time window of precipitation accumulation that can represent the observed precipitation variations, and (3) determining a window size and cut-of frequency of a low-pass flter to have data that represent well the low-frequency variation. The lag-distributed models improved the ERA5 data precipitation. A combination of approaches 1 and 2 showed the best performance for enhancing the ERA5 precipitation data, with a minimum of 6-day time window accumulation. However, this enhanced performance is not spatially homogeneous and it is poor in the northeastern region. This tool allows the use of data from ERA5 in sites where daily precipitation input data is scarce or inaccurate for diferent environmental and agricultural applications aimed at ofering permanent and updated information, such as monitoring drought, food, wildfre risk, or pest outbreaks. These applications are key to reducing ecosystem, production, and infrastructure loss in regions where climate data is a strong restriction
EEA Bariloche
Fil: Perri, Daiana Vanesa. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina
Fil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina
Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina
Fil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina
Fil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina - Fuente
- Theoretical and Applied Climatology 154. (November 2023)
- Materia
-
Vigilancia Ambiental
Agricultura
Precipitación Atmosférica
Sequía
Environmental Monitoring
Agriculture
Precipitation
Drought
ERA5
Herramientas de Monitoreo
Región Patagónica - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/16238
Ver los metadatos del registro completo
id |
INTADig_ba274869f5a0dcab08ab8fbf7feba5b8 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/16238 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regionsPerri, Daiana VanesaHurtado, Santiago IgnacioBruzzone, Octavio AugustoEasdale, Marcos HoracioVigilancia AmbientalAgriculturaPrecipitación AtmosféricaSequíaEnvironmental MonitoringAgriculturePrecipitationDroughtERA5Herramientas de MonitoreoRegión PatagónicaThe development of monitoring and early warning tools for environmental and agricultural applications is highly restricted in scarce climate data regions. In particular, precipitation data is a key input for several environmental monitoring tools on which decision-makers rely. However, precipitation records are collected by rain gauge stations, but these are frequently inhomogeneous and scarce in some regions of the world, especially in South America and Africa. In such cases, the use of alternative precipitation data sources is necessary to correctly assess its spatial and temporal variations. Therefore, we evaluate the possibility of using the ERA5 data with diferent automatic enhancement methods. Three adjustment approaches were evaluated in Northern Patagonia, which is an example of a scarce data area: (1) modifying the ERA5 daily data with three diferent regression models, one depending on lag and lead days, a distributed lag model, and a simple linear regression model, (2) detecting the lower time window of precipitation accumulation that can represent the observed precipitation variations, and (3) determining a window size and cut-of frequency of a low-pass flter to have data that represent well the low-frequency variation. The lag-distributed models improved the ERA5 data precipitation. A combination of approaches 1 and 2 showed the best performance for enhancing the ERA5 precipitation data, with a minimum of 6-day time window accumulation. However, this enhanced performance is not spatially homogeneous and it is poor in the northeastern region. This tool allows the use of data from ERA5 in sites where daily precipitation input data is scarce or inaccurate for diferent environmental and agricultural applications aimed at ofering permanent and updated information, such as monitoring drought, food, wildfre risk, or pest outbreaks. These applications are key to reducing ecosystem, production, and infrastructure loss in regions where climate data is a strong restrictionEEA BarilocheFil: Perri, Daiana Vanesa. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; ArgentinaFil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; ArgentinaFil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; ArgentinaFil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaSpringer2023-12-14T14:44:39Z2023-12-14T14:44:39Z2023-11-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/16238https://link.springer.com/article/10.1007/s00704-023-04730-81434-44830177-798Xhttps://doi.org/10.1007/s00704-023-04730-8Theoretical and Applied Climatology 154. (November 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemasPatagonia .......... (general region) (World, South America, Argentina)7016766info:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:15Zoai:localhost:20.500.12123/16238instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:16.43INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions |
title |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions |
spellingShingle |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions Perri, Daiana Vanesa Vigilancia Ambiental Agricultura Precipitación Atmosférica Sequía Environmental Monitoring Agriculture Precipitation Drought ERA5 Herramientas de Monitoreo Región Patagónica |
title_short |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions |
title_full |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions |
title_fullStr |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions |
title_full_unstemmed |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions |
title_sort |
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions |
dc.creator.none.fl_str_mv |
Perri, Daiana Vanesa Hurtado, Santiago Ignacio Bruzzone, Octavio Augusto Easdale, Marcos Horacio |
author |
Perri, Daiana Vanesa |
author_facet |
Perri, Daiana Vanesa Hurtado, Santiago Ignacio Bruzzone, Octavio Augusto Easdale, Marcos Horacio |
author_role |
author |
author2 |
Hurtado, Santiago Ignacio Bruzzone, Octavio Augusto Easdale, Marcos Horacio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Vigilancia Ambiental Agricultura Precipitación Atmosférica Sequía Environmental Monitoring Agriculture Precipitation Drought ERA5 Herramientas de Monitoreo Región Patagónica |
topic |
Vigilancia Ambiental Agricultura Precipitación Atmosférica Sequía Environmental Monitoring Agriculture Precipitation Drought ERA5 Herramientas de Monitoreo Región Patagónica |
dc.description.none.fl_txt_mv |
The development of monitoring and early warning tools for environmental and agricultural applications is highly restricted in scarce climate data regions. In particular, precipitation data is a key input for several environmental monitoring tools on which decision-makers rely. However, precipitation records are collected by rain gauge stations, but these are frequently inhomogeneous and scarce in some regions of the world, especially in South America and Africa. In such cases, the use of alternative precipitation data sources is necessary to correctly assess its spatial and temporal variations. Therefore, we evaluate the possibility of using the ERA5 data with diferent automatic enhancement methods. Three adjustment approaches were evaluated in Northern Patagonia, which is an example of a scarce data area: (1) modifying the ERA5 daily data with three diferent regression models, one depending on lag and lead days, a distributed lag model, and a simple linear regression model, (2) detecting the lower time window of precipitation accumulation that can represent the observed precipitation variations, and (3) determining a window size and cut-of frequency of a low-pass flter to have data that represent well the low-frequency variation. The lag-distributed models improved the ERA5 data precipitation. A combination of approaches 1 and 2 showed the best performance for enhancing the ERA5 precipitation data, with a minimum of 6-day time window accumulation. However, this enhanced performance is not spatially homogeneous and it is poor in the northeastern region. This tool allows the use of data from ERA5 in sites where daily precipitation input data is scarce or inaccurate for diferent environmental and agricultural applications aimed at ofering permanent and updated information, such as monitoring drought, food, wildfre risk, or pest outbreaks. These applications are key to reducing ecosystem, production, and infrastructure loss in regions where climate data is a strong restriction EEA Bariloche Fil: Perri, Daiana Vanesa. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina Fil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina Fil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina |
description |
The development of monitoring and early warning tools for environmental and agricultural applications is highly restricted in scarce climate data regions. In particular, precipitation data is a key input for several environmental monitoring tools on which decision-makers rely. However, precipitation records are collected by rain gauge stations, but these are frequently inhomogeneous and scarce in some regions of the world, especially in South America and Africa. In such cases, the use of alternative precipitation data sources is necessary to correctly assess its spatial and temporal variations. Therefore, we evaluate the possibility of using the ERA5 data with diferent automatic enhancement methods. Three adjustment approaches were evaluated in Northern Patagonia, which is an example of a scarce data area: (1) modifying the ERA5 daily data with three diferent regression models, one depending on lag and lead days, a distributed lag model, and a simple linear regression model, (2) detecting the lower time window of precipitation accumulation that can represent the observed precipitation variations, and (3) determining a window size and cut-of frequency of a low-pass flter to have data that represent well the low-frequency variation. The lag-distributed models improved the ERA5 data precipitation. A combination of approaches 1 and 2 showed the best performance for enhancing the ERA5 precipitation data, with a minimum of 6-day time window accumulation. However, this enhanced performance is not spatially homogeneous and it is poor in the northeastern region. This tool allows the use of data from ERA5 in sites where daily precipitation input data is scarce or inaccurate for diferent environmental and agricultural applications aimed at ofering permanent and updated information, such as monitoring drought, food, wildfre risk, or pest outbreaks. These applications are key to reducing ecosystem, production, and infrastructure loss in regions where climate data is a strong restriction |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-14T14:44:39Z 2023-12-14T14:44:39Z 2023-11-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/16238 https://link.springer.com/article/10.1007/s00704-023-04730-8 1434-4483 0177-798X https://doi.org/10.1007/s00704-023-04730-8 |
url |
http://hdl.handle.net/20.500.12123/16238 https://link.springer.com/article/10.1007/s00704-023-04730-8 https://doi.org/10.1007/s00704-023-04730-8 |
identifier_str_mv |
1434-4483 0177-798X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemas |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Patagonia .......... (general region) (World, South America, Argentina) 7016766 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Theoretical and Applied Climatology 154. (November 2023) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619182940880896 |
score |
12.559606 |