Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators

Autores
Papastefanou, Phillip; Zang, Christian S.; Angelov, Zlatan; De Castro, Aline Anderson; Jimenez, Juan Carlos; Campos De Rezende, Luiz Felipe; Ruscica, Romina; Sakschewski, Boris; Sörensson, Anna; Thonicke, Kirsten; Vera, Carolina Susana; Viovy, Nicolas; Von Randow, Celso; Rammig, Anja
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Over the last decades, the Amazon rainforest has been hit by multiple severe drought events. Here, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon region and their impacts on the regional carbon cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum cumulative water deficit (MCWD). Evaluating nine state-of-the-art precipitation datasets for the Amazon region, we find that the spatial extent of the drought in 2005 ranges from 2.2 to 3.0 (meanCombining double low line2.7) ×106km2 (37%-51% of the Amazon basin, meanCombining double low line45%), where MCWD indicates at least moderate drought conditions (relative MCWD anomaly <-0.5). In 2010, the affected area was about 16% larger, ranging from 3.0 up to 4.4 (meanCombining double low line3.6) ×106km2 (51%-74%, meanCombining double low line61%). In 2016, the mean area affected by drought stress was between 2005 and 2010 (meanCombining double low line3.2×106km2; 55% of the Amazon basin), but the general disagreement between datasets was larger, ranging from 2.4 up to 4.1×106km2 (40%-69%). In addition, we compare differences and similarities among datasets using the self-calibrating Palmer Drought Severity Index (scPDSI) and a dry-season rainfall anomaly index (RAI). We find that scPDSI shows a stronger and RAI a much weaker drought impact in terms of extent and severity for the year 2016 compared to MCWD. We further investigate the impact of varying evapotranspiration on the drought indicators using two state-of-the-art evapotranspiration datasets. Generally, the variability in drought stress is most dependent on the drought indicator (60%), followed by the choice of the precipitation dataset (20%) and the evapotranspiration dataset (20%). Using a fixed, constant evapotranspiration rate instead of variable evapotranspiration can lead to an overestimation of drought stress in the parts of Amazon basin that have a more pronounced dry season (for example in 2010). We highlight that even for well-known drought events the spatial extent and intensity can strongly depend upon the drought indicator and the data sources it is calculated with. Using only one data source and drought indicator has the potential danger of under- or overestimating drought stress in regions with high measurement uncertainty, such as the Amazon basin.
Fil: Papastefanou, Phillip. Universitat Technical Zu Munich; Alemania
Fil: Zang, Christian S.. Weihenstephan-Triesdorf University of Applied Sciences; Alemania
Fil: Angelov, Zlatan. Universitat Technical Zu Munich; Alemania
Fil: De Castro, Aline Anderson. National Institute for Spatial Research; Brasil
Fil: Jimenez, Juan Carlos. Universidad de Valencia; España
Fil: Campos De Rezende, Luiz Felipe. National Institute for Spatial Research; Brasil
Fil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Sakschewski, Boris. No especifíca;
Fil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Thonicke, Kirsten. No especifíca;
Fil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Viovy, Nicolas. Universite Paris-Saclay;
Fil: Von Randow, Celso. National Institute for Spatial Research; Brasil
Fil: Rammig, Anja. Universitat Technical Zu Munich; Alemania
Materia
DROUGHT INDICATORS
AMAZONIA
PRECIPITATION
EVAPOTRANSPIRATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214171

id CONICETDig_dcef5b37dcf5baa27bb8875d64bc9246
oai_identifier_str oai:ri.conicet.gov.ar:11336/214171
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicatorsPapastefanou, PhillipZang, Christian S.Angelov, ZlatanDe Castro, Aline AndersonJimenez, Juan CarlosCampos De Rezende, Luiz FelipeRuscica, RominaSakschewski, BorisSörensson, AnnaThonicke, KirstenVera, Carolina SusanaViovy, NicolasVon Randow, CelsoRammig, AnjaDROUGHT INDICATORSAMAZONIAPRECIPITATIONEVAPOTRANSPIRATIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Over the last decades, the Amazon rainforest has been hit by multiple severe drought events. Here, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon region and their impacts on the regional carbon cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum cumulative water deficit (MCWD). Evaluating nine state-of-the-art precipitation datasets for the Amazon region, we find that the spatial extent of the drought in 2005 ranges from 2.2 to 3.0 (meanCombining double low line2.7) ×106km2 (37%-51% of the Amazon basin, meanCombining double low line45%), where MCWD indicates at least moderate drought conditions (relative MCWD anomaly <-0.5). In 2010, the affected area was about 16% larger, ranging from 3.0 up to 4.4 (meanCombining double low line3.6) ×106km2 (51%-74%, meanCombining double low line61%). In 2016, the mean area affected by drought stress was between 2005 and 2010 (meanCombining double low line3.2×106km2; 55% of the Amazon basin), but the general disagreement between datasets was larger, ranging from 2.4 up to 4.1×106km2 (40%-69%). In addition, we compare differences and similarities among datasets using the self-calibrating Palmer Drought Severity Index (scPDSI) and a dry-season rainfall anomaly index (RAI). We find that scPDSI shows a stronger and RAI a much weaker drought impact in terms of extent and severity for the year 2016 compared to MCWD. We further investigate the impact of varying evapotranspiration on the drought indicators using two state-of-the-art evapotranspiration datasets. Generally, the variability in drought stress is most dependent on the drought indicator (60%), followed by the choice of the precipitation dataset (20%) and the evapotranspiration dataset (20%). Using a fixed, constant evapotranspiration rate instead of variable evapotranspiration can lead to an overestimation of drought stress in the parts of Amazon basin that have a more pronounced dry season (for example in 2010). We highlight that even for well-known drought events the spatial extent and intensity can strongly depend upon the drought indicator and the data sources it is calculated with. Using only one data source and drought indicator has the potential danger of under- or overestimating drought stress in regions with high measurement uncertainty, such as the Amazon basin.Fil: Papastefanou, Phillip. Universitat Technical Zu Munich; AlemaniaFil: Zang, Christian S.. Weihenstephan-Triesdorf University of Applied Sciences; AlemaniaFil: Angelov, Zlatan. Universitat Technical Zu Munich; AlemaniaFil: De Castro, Aline Anderson. National Institute for Spatial Research; BrasilFil: Jimenez, Juan Carlos. Universidad de Valencia; EspañaFil: Campos De Rezende, Luiz Felipe. National Institute for Spatial Research; BrasilFil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Sakschewski, Boris. No especifíca;Fil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Thonicke, Kirsten. No especifíca;Fil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Viovy, Nicolas. Universite Paris-Saclay;Fil: Von Randow, Celso. National Institute for Spatial Research; BrasilFil: Rammig, Anja. Universitat Technical Zu Munich; AlemaniaCopernicus Publications2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214171Papastefanou, Phillip; Zang, Christian S.; Angelov, Zlatan; De Castro, Aline Anderson; Jimenez, Juan Carlos; et al.; Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators; Copernicus Publications; Biogeosciences; 19; 16; 8-2022; 3843-38611726-4189CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://bg.copernicus.org/articles/19/3843/2022/info:eu-repo/semantics/altIdentifier/doi/10.5194/bg-19-3843-2022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:06Zoai:ri.conicet.gov.ar:11336/214171instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:06.905CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
title Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
spellingShingle Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Papastefanou, Phillip
DROUGHT INDICATORS
AMAZONIA
PRECIPITATION
EVAPOTRANSPIRATION
title_short Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
title_full Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
title_fullStr Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
title_full_unstemmed Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
title_sort Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
dc.creator.none.fl_str_mv Papastefanou, Phillip
Zang, Christian S.
Angelov, Zlatan
De Castro, Aline Anderson
Jimenez, Juan Carlos
Campos De Rezende, Luiz Felipe
Ruscica, Romina
Sakschewski, Boris
Sörensson, Anna
Thonicke, Kirsten
Vera, Carolina Susana
Viovy, Nicolas
Von Randow, Celso
Rammig, Anja
author Papastefanou, Phillip
author_facet Papastefanou, Phillip
Zang, Christian S.
Angelov, Zlatan
De Castro, Aline Anderson
Jimenez, Juan Carlos
Campos De Rezende, Luiz Felipe
Ruscica, Romina
Sakschewski, Boris
Sörensson, Anna
Thonicke, Kirsten
Vera, Carolina Susana
Viovy, Nicolas
Von Randow, Celso
Rammig, Anja
author_role author
author2 Zang, Christian S.
Angelov, Zlatan
De Castro, Aline Anderson
Jimenez, Juan Carlos
Campos De Rezende, Luiz Felipe
Ruscica, Romina
Sakschewski, Boris
Sörensson, Anna
Thonicke, Kirsten
Vera, Carolina Susana
Viovy, Nicolas
Von Randow, Celso
Rammig, Anja
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv DROUGHT INDICATORS
AMAZONIA
PRECIPITATION
EVAPOTRANSPIRATION
topic DROUGHT INDICATORS
AMAZONIA
PRECIPITATION
EVAPOTRANSPIRATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Over the last decades, the Amazon rainforest has been hit by multiple severe drought events. Here, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon region and their impacts on the regional carbon cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum cumulative water deficit (MCWD). Evaluating nine state-of-the-art precipitation datasets for the Amazon region, we find that the spatial extent of the drought in 2005 ranges from 2.2 to 3.0 (meanCombining double low line2.7) ×106km2 (37%-51% of the Amazon basin, meanCombining double low line45%), where MCWD indicates at least moderate drought conditions (relative MCWD anomaly <-0.5). In 2010, the affected area was about 16% larger, ranging from 3.0 up to 4.4 (meanCombining double low line3.6) ×106km2 (51%-74%, meanCombining double low line61%). In 2016, the mean area affected by drought stress was between 2005 and 2010 (meanCombining double low line3.2×106km2; 55% of the Amazon basin), but the general disagreement between datasets was larger, ranging from 2.4 up to 4.1×106km2 (40%-69%). In addition, we compare differences and similarities among datasets using the self-calibrating Palmer Drought Severity Index (scPDSI) and a dry-season rainfall anomaly index (RAI). We find that scPDSI shows a stronger and RAI a much weaker drought impact in terms of extent and severity for the year 2016 compared to MCWD. We further investigate the impact of varying evapotranspiration on the drought indicators using two state-of-the-art evapotranspiration datasets. Generally, the variability in drought stress is most dependent on the drought indicator (60%), followed by the choice of the precipitation dataset (20%) and the evapotranspiration dataset (20%). Using a fixed, constant evapotranspiration rate instead of variable evapotranspiration can lead to an overestimation of drought stress in the parts of Amazon basin that have a more pronounced dry season (for example in 2010). We highlight that even for well-known drought events the spatial extent and intensity can strongly depend upon the drought indicator and the data sources it is calculated with. Using only one data source and drought indicator has the potential danger of under- or overestimating drought stress in regions with high measurement uncertainty, such as the Amazon basin.
Fil: Papastefanou, Phillip. Universitat Technical Zu Munich; Alemania
Fil: Zang, Christian S.. Weihenstephan-Triesdorf University of Applied Sciences; Alemania
Fil: Angelov, Zlatan. Universitat Technical Zu Munich; Alemania
Fil: De Castro, Aline Anderson. National Institute for Spatial Research; Brasil
Fil: Jimenez, Juan Carlos. Universidad de Valencia; España
Fil: Campos De Rezende, Luiz Felipe. National Institute for Spatial Research; Brasil
Fil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Sakschewski, Boris. No especifíca;
Fil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Thonicke, Kirsten. No especifíca;
Fil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Viovy, Nicolas. Universite Paris-Saclay;
Fil: Von Randow, Celso. National Institute for Spatial Research; Brasil
Fil: Rammig, Anja. Universitat Technical Zu Munich; Alemania
description Over the last decades, the Amazon rainforest has been hit by multiple severe drought events. Here, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon region and their impacts on the regional carbon cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum cumulative water deficit (MCWD). Evaluating nine state-of-the-art precipitation datasets for the Amazon region, we find that the spatial extent of the drought in 2005 ranges from 2.2 to 3.0 (meanCombining double low line2.7) ×106km2 (37%-51% of the Amazon basin, meanCombining double low line45%), where MCWD indicates at least moderate drought conditions (relative MCWD anomaly <-0.5). In 2010, the affected area was about 16% larger, ranging from 3.0 up to 4.4 (meanCombining double low line3.6) ×106km2 (51%-74%, meanCombining double low line61%). In 2016, the mean area affected by drought stress was between 2005 and 2010 (meanCombining double low line3.2×106km2; 55% of the Amazon basin), but the general disagreement between datasets was larger, ranging from 2.4 up to 4.1×106km2 (40%-69%). In addition, we compare differences and similarities among datasets using the self-calibrating Palmer Drought Severity Index (scPDSI) and a dry-season rainfall anomaly index (RAI). We find that scPDSI shows a stronger and RAI a much weaker drought impact in terms of extent and severity for the year 2016 compared to MCWD. We further investigate the impact of varying evapotranspiration on the drought indicators using two state-of-the-art evapotranspiration datasets. Generally, the variability in drought stress is most dependent on the drought indicator (60%), followed by the choice of the precipitation dataset (20%) and the evapotranspiration dataset (20%). Using a fixed, constant evapotranspiration rate instead of variable evapotranspiration can lead to an overestimation of drought stress in the parts of Amazon basin that have a more pronounced dry season (for example in 2010). We highlight that even for well-known drought events the spatial extent and intensity can strongly depend upon the drought indicator and the data sources it is calculated with. Using only one data source and drought indicator has the potential danger of under- or overestimating drought stress in regions with high measurement uncertainty, such as the Amazon basin.
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214171
Papastefanou, Phillip; Zang, Christian S.; Angelov, Zlatan; De Castro, Aline Anderson; Jimenez, Juan Carlos; et al.; Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators; Copernicus Publications; Biogeosciences; 19; 16; 8-2022; 3843-3861
1726-4189
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214171
identifier_str_mv Papastefanou, Phillip; Zang, Christian S.; Angelov, Zlatan; De Castro, Aline Anderson; Jimenez, Juan Carlos; et al.; Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators; Copernicus Publications; Biogeosciences; 19; 16; 8-2022; 3843-3861
1726-4189
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://bg.copernicus.org/articles/19/3843/2022/
info:eu-repo/semantics/altIdentifier/doi/10.5194/bg-19-3843-2022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Copernicus Publications
publisher.none.fl_str_mv Copernicus Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613388053774336
score 13.070432